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ABSTRACT 

 

The RSA algorithm, developed in 1977, is a popular public-key cryptography method used to 

securely transmit data. It uses a public and private key pair for encryption and decryption. RSA 

works by making it computationally difficult for anyone to derive the private key from the public 

key, even though they are related mathematically. This project explains the math concepts behind 

RSA and shows how to implement a basic version using C programming. It gives some history - 

cryptography has been used for centuries to protect messages, and RSA was invented to solve the 

problem of securely distributing keys, enabling emerging digital networks to have encryption 

protocols. The core ideas that make RSA work involve prime numbers, modular arithmetic, and 

exponentiation with very large random numbers. By choosing two large prime numbers randomly 

and using modular exponentiation, RSA creates a one-way function that is easy to compute in one 

direction (to encrypt) but extremely difficult to reverse (decrypt) without the private key. This is 

what provides RSA's security. The project walks through the key steps to implement RSA - first 

generating a public and private key pair correctly using number theory, then writing the encryption 

and decryption functions using modulo arithmetic. It mentions some ways to improve security like 

longer keys and padding schemes. Once RSA is implemented in code, you can encrypt and decrypt 

test messages. In summary, RSA revolutionized cryptography by making secure communication 

possible without first exchanging a secret key. This enabled e-commerce, online banking, digital 

signatures and other applications that we rely on today. The RSA algorithm's longevity and 

widespread adoption across encryption protocols and standards demonstrate why RSA remains a 

widely used and robust public-key cryptosystem. 
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Chapter 1 

Introduction 

 

RSA (Rivest–Shamir–Adleman) is a widely used asymmetric cryptography algorithm for secure 

data transmission. It was discovered in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman 

[1]. The security of RSA relies on the difficulty of factoring large composite integers. It uses 

modular exponentiation with very large numbers (typically 1024-2048 bits) for encryption and 

decryption. 

This project aims to understand the mathematical concepts behind RSA and implement a simple 

version of it in C programming language. 

 

1.1. History  

Cryptography dates back thousands of years when the need arose to conceal messages, often during 

times of war, political intrigue or trade competition. Some of the earliest documents showing 

evidence of cryptographic methods is an Egyptian letter from around 1900 BC [2] where 

hieroglyphics were encrypted using simple substitution ciphers.  

In ancient Greece around 600 BC, the Spartans used a cipher device known as a "scytale" [3] to 

help military commanders communicate secretly while on campaigns. This involved wrapping a 

leather strip around a staff, writing a message along that strip and then unwraving it, which had 

the effect of scrambling the message to anyone without the corresponding staff diameter. Ancient 

Greek records from Herodotus in Histories discuss secret messages being shaved into a 

messenger's head, covered by hair, then revealed by shaving the head. Clearly even Millenia ago 

messages needed to be kept secret. 

 

1.2. The Evolution of Cryptography: From Ancient Ciphers to Modern Encryption 

1.2.1. The Caesar Cipher 

Julius Caesar himself, writing in his Conquests of Gaul [4] around 50BC, records using a simple 

cipher to protect messages of military significance. This involves replacing or shifting each letter 

a fixed number of places down the alphabet - named centuries later as the Caesar Cipher. For 

instance, with a right shift of 3, A becomes D, B becomes E and so on. The first recorded use of 
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frequency analysis to study letter patterns and likely break such ciphers appears in an Arab 

manuscript A Manuscript on Deciphering Cryptographic Messages written around the 9th century, 

showing cryptanalysis developing soon after the introduction of cryptography itself. Clearly as the 

use of ciphers increased, there arose a need to try to break them for military, diplomatic and trade 

purposes. Cryptography and its counter-science, cryptoanalysis, have continued this struggle 

throughout history with cryptographers introducing ever more complex ciphers and code breakers 

trying to crack them. 

 

1.2.2. Medieval Cipher Methods 

Simple monoalphabetic substitution ciphers as well as Caesar ciphers continued to be used through 

the Middle Ages, by political leaders, diplomats and military campaigns across the world. An early 

forerunner of cryptanalysis dates from the 9th century Abbasid Caliph Harun al-Rashid [5] of 

Persia whose intelligence service broke foreign ciphers, cryptanalyzed enemy messages and 

developed procedures for solving ciphers using techniques like frequency analysis of letters. 

More complex medieval ciphers developed in the Muslim world include the nihilist cipher from 

10th century Abbasid administration which associated random cipher letters with certain other 

letters to build an encryption key. Cryptoanalysis included solving for the repeated pattern of 

letters. The travelling Abbasid couriers also used a method of hiding messages within written tales 

in the 12th and 13th centuries where the second letter of each word denotes the secret message, 

passing through routes to Egypt, Tunisia and Morocco - a forerunner of steganographic techniques. 

European cryptographers also developed increasingly complex ciphers through the Middle Ages. 

Roger Bacon [6] in the 13th century described ciphers using multiple forms of substitution and 

symbols to represent letters. Johannes Trithemius in his 1499 book Polygraohica [7] introduced 

the tabula recta - a chart of alphabet shifted by one to create the first letter substitution patterns for 

polyalphabetic substitution, and the Vigenère cipher. [8] 

 

1.2.3. Polyalphabetic Ciphers 

The most significant cryptographic development of the Renaissance was the invention of 

polyalphabetic substitution ciphers. For over a millennium, the standard cipher method had been 

monoalphabetic - using just one fixed cipher alphabet to substitute plaintext letters or symbols. 
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Polyalphabetic ciphers changed the substitution alphabet throughout the encrypted text, drastically 

increasing resistance to basic frequency analysis.  

The first known implementation was by Leon Battista Alberti [9] around 1467 using an encryption 

disk with two alphabets and used fixed steps between them. Johannes Trithemius [10] produced 

the tabula recta containing 26 rotated alphabets in horizontal rows with the vertical columns in 

normal alphabetical order. Each row shifted one letter right from the one above it. This created a 

tableau to reference for encryption manually selecting a sequence of shifted alphabets.   

Giovan Bellaso [11] independently implemented a similar scheme, known as the Vigenère cipher. 

For encryption, a key word is selected e.g., LEMON with alphabets selected starting from 

corresponding letters spelling the key word. Decryption requires using the same key word and 

sequence. This simple concept marked a major leap in cipher security. Variations like the Autokey 

cipher which used the message itself to choose alphabets made cryptanalysis even harder. 

Codebreaking techniques evolved too from analysis of letter frequencies to identifying patterns of 

repeated words to break these polyalphabetic ciphers. 

The security of encryption schemes pitted against efforts to crack them accelerated rapidly from 

this point on. As European powers vied for global control in trade, politics and colonial expansion, 

cryptographic security became a key strategic capability.    

 

1.2.4. Emergence of Mechanical and Electromechanical Ciphers    

As cryptography advanced mathematically, inventors created mechanical devices implementing 

these polyalphabetic ciphers to simplify the process. Early Renaissance cipher disks had two 

alphabets which could be rotated to align substitute letters. More complex mechanical ciphers 

emerged in subsequent centuries like the cylindrical cipher machine in the 1500s, the Japanese 

baton cipher machine in the 1600s which used multiple cipher rods, and the Jefferson wheel cipher 

[12] invented around 1790 which implemented Trithemius' table.  

 The 19th century saw rapid proliferation powered by industrialization. Inventions included the 

cipher disk-based Wheatstone-Cooke cipher in 1834, Keyed Vigenère ciphers like the Bazeries 

cylinder [13] in 1890, rotor cipher machines by Edward Hebern [14] of the USA in 1917 which 

encoded each letter substituted via an electrical path. Encryption was now possible on an 

unprecedented scale. These laid the foundations for even more complex electromechanical cipher 

machines used through WW1 and WW2 like the German Enigma [15], Japanese Purple [16], USA 
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SIGABA [17] and British TypeX [18] machines - which became a focal point of cryptoanalysis to 

extract wartime intelligence through agencies like Bletchley Park. [19] 

 

1.2.5. Analytic Ciphers, Modern Cryptography and the Computer Age 

Key developments in modern mathematical cryptography emerged in the early 20th century 

pioneering information theory and computation based crypto-systems. William Friedman 

pioneered application of mathematics and analysis to cryptology. Lester Hill [20] built on these 

applying statistics and systems analysis at Bell labs to assess language and cryptosystems. Claude 

Shannon [21] formalized analysis on communication secrecy systems focusing on theoretical 

limits in his 1945 paper A Mathematical Theory of Cryptography.  

The computer age after WW2 enabled implementing far more mathematically complex 

cryptosystems. The 'unbreakable' one-time pad developed earlier was now feasible for 

communications using XOR operations. In 1970 Horst Feistel [22] conceptualized cipher block 

chaining for iterative rounds of substitution and permutation, implemented later in DES and other 

Feistel ciphers. Public key cryptography emerged in 1976 from Whitfield Diffie, Martin Hellman 

and Ralph Merkle [23] using key pairs to enable secrecy without exchanging keys, conceived 

separately also by Ellis, Cocks and Williamson earlier at British GCHQ, but kept then classified. 

This was soon implemented in RSA public key encryption in 1977 by Ron Rivest, Adi Shamir and 

Len Adleman [24]. Since the 1980s computer age modern cryptography has become ubiquitous 

globally across defense, government and commercial communication networks to secure the 

modern digital world - as cryptography returns in a sense similar to its ancient origins in keeping 

messages secret but now on an unprecedented scale. Quantum computing poses the next frontier 

promising both vastly faster crypto as well as the ability to break many current systems. 

 

So, in summary, cryptography has evolved from ancient civilizations confronting early secrets to 

dynasties and military leadership using simple letter substitutions for a degree of basic message 

secrecy. This developed mathematically but slowly across millennia to polyalphabetic ciphers 

which remained manual and quite simplistic by modern standards till machines arrived to 

mechanize encryption and computation transformed cryptographic complexity. From early 

substitution ciphers to mathematical algorithms implemented electronically across global 
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networks, cryptography has become ever more embedded into the modern world nearly as essential 

as the messages it protects. 

 

1.3. Significant landmarks in cryptography 

1.3.1. Caesar Cipher (50BC) 

While substitution ciphers likely existed earlier, Julius Caesar's [25] first-hand account of using a 

simple cipher for military communications brought it attention. His replacement scheme shifted 

each letter by 3 positions alphabetically in a cyclic manner (A becomes D, B becomes E etc.). 

Despite no advanced security, its association with such a prominent historical figure immortalized 

it as the 'Caesar cipher'. It represents one of the earliest known uses of encryption for messaging 

confidentiality. 

 

1.3.2. Frequency Analysis (c.850 AD)  

Al-Kindi [26], an Arab polymath, wrote extensive manuscripts on deciphering encrypted 

messages. He described using statistical analysis by counting letter frequencies to deduce the 

language, facilitate pattern recognition, and enable codebreaking. This marked the beginnings of 

cryptanalysis - the science of attacking ciphers. It evolved into an intellectual arms race against 

advances in encryption to modern differential cryptanalysis. 

 

1.3.3. Polyalphabetic Cipher (1467) 

Leon Battista Alberti [27], a prominent Italian Renaissance polymath, developed an advancement 

over monoalphabetic Caesar ciphers by using multiple cipher alphabets at different places in the 

message to make cryptanalysis harder. This polyalphabetic cipher confounded basic letter 

frequency analysis. The concept later improved as the Vigenère cipher and Autokey ciphers ahead 

of the mechanical cipher revolution.   

 

1.3.4. Enigma Machine (1918)  

Arthur Scherbius [28], German electrical engineer, patented the cipher design that became the 

Enigma machine - an electromechanical rotor mechanism with steerage components implementing 

polyalphabetic substitution but on an industrial, reproducible scale. Its role securing German 
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communications during WWII and the cryptographic breakthroughs by Allies to decrypt it shaped 

the trajectory of modern cryptography more than any event. 

 

1.3.5. One-Time Pad (1917)    

Gilbert Vernam [29] at AT&T Bell Labs and Joseph Mauborgne at the US Army invented the one-

time pad - unbreakable because the random secret key is the same length as the message and used 

once. Its impractical key distribution prevented adoption earlier. But information theoretic security 

founded modern cryptography. The KGB's reuse enabling some breaks highlighted importance of 

randomness. 

 

1.3.6. Public Key Cryptography (1976)   

Whitfield Diffie and Martin Hellman's [30] paper introduced public key cryptography radically 

enabling secure communication without first exchanging secret keys. Ralph Merkle also 

contributed independently. This made strong encryption widely accessible beyond government 

agencies with key distribution infrastructure, energizing modern cryptography globally across 

finance, tech etc. 

 

1.3.7. RSA Algorithm (1977) 

Ron Rivest, Adi Shamir and Len Adleman formulated the RSA algorithm [31] soon after public 

key crypto's introduction. Its practical design for encryption and signatures using factorization of 

large primes spawned by academic collaboration swiftly made RSA a global standard implemented 

extensively online ever since as it powered ecommerce and communications.  

 

1.4. Principles of Cryptography [32] 

Cryptography aims to achieve the following goals: 

I. Confidentiality: The information cannot be accessed by unauthorized parties. This 

requires the plain text to be encrypted using a secret key. 

II. Integrity: Ensures that information is not altered by third parties. Cryptographic hash 

functions help verify message integrity. 

III. Authentication: Corroborates the identity of the message sender. Digital signatures are 

used to authenticate the source. 
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IV. Non-Repudiation: Prevents denial of actions or events and ensures accountability. Used 

in applications like transaction records. 

V. Key management − Key management refers to the process of generating, distributing, and 

managing cryptographic keys. Proper key management is essential for the security of a 

cryptographic system, as the security of the system depends on the secrecy of the key. 

 

1.5. The main types of cryptographic algorithms  

1.5.1. Symmetric Key Cryptography 

Symmetric key cryptography refers to encryption methods that use the same secret key for both 

encrypting and decrypting messages. The sender uses the key to encrypt the plaintext and sends 

the ciphertext to the receiver. The receiver applies the same key to decrypt the message and recover 

the original plaintext. 

This is in contrast to asymmetric or public-key cryptography which uses different keys for 

encryption and decryption. Symmetric ciphers have the advantage of simplicity and faster 

performance versus public key encryption. However, the main challenge lies in securely 

exchanging the shared secret key between communicating parties before secure communication 

can take place. 

Some early encryption standards that incorporated symmetric ciphers include: 

I. Data Encryption Standard (DES) [33] published in 1977 uses 56-bit keys and is based on 

an Feistel cipher structure. It was eventually deemed vulnerable to brute force attacks. 

II. Triple DES (3DES) [34] is an enhancement to DES to increase security by using the DES 

cipher three times with three different keys. 

III. The Advanced Encryption Standard (AES) published in 2001 was designed by Joan 

Daemen and Vincent Rijmen [35]. AES with a 128-bit, 192-bit or 256-bit key size 

eventually emerged as the new global standard for symmetric encryption, replacing DES 

and 3DES. 

 

Modes of Operation 

While DES, 3DES and AES specify secure block ciphers, additional modes of operation define 

how those ciphers are applied to encrypt longer messages: 
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I. Electronic Code Book (ECB) mode: Each block is encrypted independently using the 

cipher. This lacks cryptographic linking between blocks. 

 

II. Cipher Block Chaining (CBC) mode: Each block of plaintext is XORed with the previous 

ciphertext prior to encryption to ensure chaining and dependence between blocks. An 

initialization vector adds randomness to the first block. 

 

III. Output Feedback (OFB) and Cipher Feedback (CFB) modes: The block cipher creates a 

keystream which is then XORed with plaintext to produce ciphertext, with chaining 

between blocks. 

IV. Counter (CTR) mode: A counter is encrypted and the output keystream is XORed with the 

plaintext to provide encryption. This allows parallelization since blocks can be encrypted 

independently. 

 

Common Symmetric Algorithms 

I. AES [36] and 3DES [37] dominate current symmetric encryption use cases. Other 

algorithms include: 

II. Blowfish designed by Bruce Schneier [38] uses a 64-bit block cipher with variable key 

length up to 448 bits. Known for speed and efficiency across platforms. 

III. RC4 [39] designed by Ron Rivest is a symmetric stream cipher supporting keys between 

40 bits to 2,048 bits in length, now deemed insecure for encryption but still widely used 

for key derivation. 

IV. ChaCha20 [40] developed by Daniel Bernstein also offers a fast stream cipher as an 

alternate to AES and is gaining adoption after standardization. Superior performance but 

at the cost of more resource usage versus AES. 

 

 Symmetric key cryptography is essential for bulk data encryption and widely used in conjunction 

with asymmetric encryption for secure internet communications. AES has become the preferred 

standard for strong symmetric data protection into the foreseeable future across nearly all 

applications. 
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1.5.2. Asymmetric Key Cryptography 

Unlike symmetric algorithms, asymmetric key cryptography uses a pair of mathematically related 

cryptographic keys for encryption and decryption. These include: 

I. Public Key - This key is made openly available and can be used by anyone to encrypt 

messages. However, it cannot decrypt messages. 

II. Private Key - This key must remain secret with the owner. It is mathematically linked to 

the public key. Only the private key holder can decrypt messages that were encrypted using 

the corresponding public key. 

 

This solves the key exchange problem prevalent in symmetric ciphers. Anyone can encrypt 

messages using the freely available public key. But in asymmetric ciphers only the designated 

receiver with the paired private key can decrypt it.  

Popular asymmetric algorithms include RSA, ECC, ElGamal and Diffie-Hellman key exchange 

designed for authenticated key agreement between parties. 

 

RSA Asymmetric Key Generation, Encryption and Decryption 

I. Key Generation 

- Choose two very large random prime numbers p and q. 

- Compute modulus n = p*q 

- Calculate totient φ(n) = (p-1) * (q-1)   

- Select encryption exponent e co-prime to φ(n)  

 

II. Encryption  

Sender encrypts message m using receiver's public key (e, n): 

c = me (mod n) 

This can be calculated efficiently by anyone since the public key is openly shared. 

 

III. Decryption 

Receiver decrypts the ciphertext c using their private key (d, n):   

m = cd mod n 

This relies on the number theoretic relationship of d to retrieve the original message m. 
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Only the designated private key holder can decrypt messages encrypted with the corresponding 

public key. This asymmetric encryption and decryption via mathematically linked key pairs 

eliminates the need to secretly exchange a shared key as necessary with symmetric ciphers. RSA 

public key encryption enabled secure communication channels over public networks also ushering 

in an era of secure ecommerce and internet-based financial transactions. 

 

1.5.3. Hash Functions 

A cryptographic hash function is a mathematical algorithm that maps data of arbitrary size to a bit 

string of fixed size. Some properties of cryptographic hash functions are: 

 

• Deterministic - Same input always generates the same hash output 

• Quick computation of hash value for any input  

• One-way function - Infeasible to invert hashes back to the input 

• Collision resistance - Very low likelihood of two different inputs generating the same hash 

• Avalanche effect - Small change in input drastically changes the hash 

Hash functions have wide applications in cryptography for data integrity checks, commitments, 

message authentication codes (MACs), digital signatures and more.  

Popular hash functions include MD5 [41] and the SHA family [42] (SHA-1, SHA-2, SHA-3 etc.). 

 

SHA-256 hash algorithm 

I. It processes input message into 512-bit blocks. The final block is padded to 512 bits as per 

padding rules. 

II. Initial hash values (H0-H7) are set based on SHA standard constants. 

III. Each 512-bit input block is broken into 16 32-bit words. These word blocks are processed 

mathematically by passing through compression functions that update the intermediate 

hash based on SHA-256 rules. 

IV. Final hash output after passing through 64 rounds of hashing is a 256-bit (32 byte) hash 

string mapped from the original input. 

V. Even a slight change in input message results in drastic change in output hash due to 

avalanching. 
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VI. Hash output only reveals checksum signature of processed input but itself reveals no 

information about input or its patterns. 

This irreversible hashing enables securely verifying integrity of data via public transmission of 

hashes as fingerprints of confidential inputs. 

Cryptographic hashes like SHA-256 [43] transform arbitrary messages into secure fixed-length 

bit-strings in an irreversible manner necessary for various information security applications. The 

one-way collision-resistant nature with extreme input sensitivity makes hash functions 

indispensable for modern cryptography. 
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Chapter 2 

RSA algorithm 

 

Asymmetric cryptography, also known as public-key cryptography, uses a pair of computationally 

linked encryption keys for secure communication between two parties. One key is made publicly 

available and can be used by anyone to encrypt messages intended for the key pair owner. 

However, decryption of messages encrypted with this public key is only possible through the 

mathematically linked private key which is kept secret by the owner. This eliminates the need for 

pre-shared secret keys between communicating parties. 

Some common examples of asymmetric algorithms include RSA, ECC, ElGamal, and Diffie-

Hellman key exchange. The mathematical one-way trapdoor functions at their core enable 

straightforward encryption using openly distributed public keys, but extremely difficult decryption 

without the corresponding private keys. Popular implementations include the RSA algorithm based 

on the integer factorization hardness assumption, and elliptic curve cryptography (ECC) based on 

the discrete logarithm problem. 

Asymmetric encryption has revolutionized secure communication over public mediums like the 

Internet by getting around the key distribution problem. It has enabled ecommerce transactions, 

encrypted web browsing via SSL/TLS, protected passwords, and digital signatures for software 

updates and documents. Encryption can be done by anyone using freely available public keys with 

reasonable computational resources. But designated receivers only can decrypt messages using 

their private key to retrieve the plaintext data securely. 

Hash functions like SHA-2 are often used in conjunction with digital signatures for data integrity 

assurances using asymmetric encryption. The message is hashed first, then the hash is encrypted 

with the private key into the signature which is appended to the message. The verification process 

involves recomputing the message hash, decrypting the signature with the public key and matching 

the hash values to authenticate the sender.  

While asymmetric cryptography solves the key distribution challenge, encryption/decryption times 

are slower compared to symmetric ciphers. Hybrid cryptosystems are often deployed using 

asymmetric encryption to securely exchange temporary session keys between parties to 

subsequently establish faster symmetric encrypted channels for transmitting bulk data.  
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As computing powers grow exponentially, cryptographic authorities recommend transitioning to 

elliptic curve cryptography and increasing RSA key sizes to stay ahead of threats to asymmetric 

system security assumptions. Post-quantum cryptography research aims to build encryption 

schemes resilient even against quantum brute force attacks expected to break most current public-

key systems. 

The RSA algorithm is a public-key encryption method that is widely used for secure data 

transmission. It was invented in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman, and 

hence the name RSA. 

The key ideas behind RSA are: 

It uses a public and private key pair for encryption and decryption. The public key is shared openly 

and used to encrypt messages, while only the paired private key can decrypt them. 

It relies on the practical difficulty of factoring large integer numbers to ensure security. Retrieving 

the private key from the public key is computationally infeasible for large keys. 

The keys are generated from two very large prime numbers, chosen randomly. The security 

depends on the randomness and size of these primes. 

Here's a quick overview of how encryption and decryption work in RSA: 

I. Key generation: Choose two large random primes p and q. Compute n = pq which is called 

the modulus. Also pick an exponent e that is coprime to (p-1) * (q-1). Then the public key 

is (n, e) and the private key is (n, d) where d is the modular multiplicative inverse of e 

modulo (p-1) * (q-1). 

II. Encryption: Say M is the message (treated as a number). Then encryption computes C = 

Me (mod n), where C is the encrypted message (cipher text). 

III. Decryption: Compute M = Cd (mod n) to recover the original message M. This works 

because d is the multiplicative inverse of e modulo (p-1) * (q-1). 

That covers the basic workings of RSA. Using very large primes and exponents enhances security.  

 

2.1. Development of the RSA algorithm 

In the early history of cryptography, the critical challenge was the key distribution problem - how 

do two parties exchange a secret key securely before they can communicate privately using 

conventional encryption. All standard ciphers like substitution, transposition and one-time pads 

required pre-sharing keys via secure channels before providing confidentiality. 
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In the 1970s, as data networks began to emerged enabling remote communications, symmetric 

encryption was impractical for securely transmitting messages between parties who have not 

communicated previously.  This key exchange dilemma was termed the "key distribution 

problem".  

Ralph Merkle [44] was one of the first to conceptualize of "public key distribution systems" in 

1974 where the receiver could publish an encryption key publicly without compromising security. 

Anyone could use this public key to encrypt messages to the receiver. But only the designated 

receivers secretly held private key could decrypt it. This concept of asymmetric public/private key 

pairs laid the groundwork towards the public-key cryptography revolution. 

 

2.1.1. Diffie-Hellman Key Exchange 

 Whitfield Diffie and Martin Hellman [48] formally described the notion of separate encryption 

and decryption keys in their 1976 paper "New Directions in Cryptography". They introduced the 

Diffie-Hellman key exchange protocol enabling two parties to jointly establish a shared secret key 

over an insecure channel even if they have never communicated before. This solved the key 

distribution problem for symmetric ciphers. 

However, the Diffie-Hellman scheme alone did not fully achieve public key encryption since the 

shared private key still needed to be kept secret between parties. An open challenge was finding a 

one-way trapdoor function: easy to compute in one direction but impossible without a private key.   

 

2.1.2. RSA Algorithm 

In 1977, cryptographers Ron Rivest, Adi Shamir and Len Adleman at MIT proposed such an 

implementation. They described the RSA algorithm just months after Diffie & Hellman's paper 

[49], using modular exponentiation based on multiplication of very large prime numbers. This laid 

the foundation for modern asymmetric cryptography and public key infrastructures. 

The RSA paper called "A Method for Obtaining Digital Signatures and Public-Key 

Cryptosystems" published in February 1978 outlined: 

I. An algorithm that enabled public key encryption eliminating pre-shared secrets 

II. A signing and verification mechanism establishing secure identity authentication  
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The mathematicians had discovered that the ease of multiplying large primes contrasted with the 

incredible difficulty of factoring their products gave a straightforward yet secure trapdoor 

mechanism. This one-way function implemented in RSA remains unbroken decades later despite 

attempts by cryptanalysts with even supercomputers at their disposal. 

 

Commercial adoption 

MIT patented the RSA algorithm in 1983. RSA Data Security Inc was launched with Rivest, 

Shamir and Adleman as co-founders along with CEO Jim Bidzos to commercialize RSA 

encryption and digital signatures solutions. Over time it became a widely used standard across 

financial transactions, encrypted web traffic, emails, software distribution and remote access - 

enabling secure ecommerce growth. 

The company RSA Security LLC was established after RSA Data Security merged with Security 

Dynamics Technologies in 1996.  RSA and its BSAFE cryptography libraries continue to be 

trusted for crypto solutions globally today especially after being acquired by EMC Corporation in 

2006 and currently as a Dell Technologies subsidiary. 

Thus within a few short years during the 1970s, concepts like asymmetric cryptography, 

computational complexity based one-way functions and public key encryption went from theory 

to an implemented standard called RSA which sparked an infosec revolution powering privacy 

and authentication capabilities across the modern digital economy. 

 

2.2. RSA development Timeline 

• 1970s - Rising need for secure communications 

In the 1970s, as computer networks and digital communications were growing, scientists 

recognized the need for cryptographic systems that would allow secure data transmission. At the 

time, the predominant encryption method was symmetric cryptography which uses a single key. 

However, managing and exchanging a single key securely between multiple parties was a major 

challenge. 
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• 1976 - Concept of public-key cryptography 

In 1976, Whitfield Diffie and Martin Hellman [50] introduced the idea of public-key cryptography. 

This involved using a pair of keys - a public key to encrypt and a private key to decrypt. It 

eliminated the key distribution problem but still relied on unproven mathematical assumptions. 

 

• 1977 - RSA algorithm invented 

In 1977, Ron Rivest, Adi Shamir and Leonard Adleman at MIT proposed the RSA algorithm, 

which offered a practical implementation of public-key cryptography. It used modular exponential 

mathematics and leveraged the difficulty of factoring large prime numbers to ensure one-way 

functions for encryption and decryption. This made RSA suitable for secure communication. 

 

• 1978 - RSA cryptography refined 

In 1978, Ronald Rivest, Adi Shamir, and Len Adleman founded RSA Data Security and refined 

the algorithm based on feedback from the cryptography community. This laid the groundwork for 

widespread adoption. 

 

• 1990s - RSA standardization and commercialization 

RSA was included in many encryption standards like SSL, TLS, etc. As e-commerce emerged in 

the 1990s, RSA became the backbone for secure online transactions helping commercialize secure 

internet communications. It remains among the most widely used algorithms for confidentiality 

and authentication due to its versatility.  

Thus, RSA was pivotal in making public-key cryptography viable and enabling secure digital 

communications. Its strength lies in the practical difficulty of inverting the one-way mathematical 

function. 

 

2.3. Public-key cryptography and its main advantages: 

Public-key cryptography, also known as asymmetric cryptography, is a method of encrypting and 

decrypting data using a key pair - a public key and a private key. These keys are mathematically 

related but it is computationally infeasible to derive the private key from the public key. 

Here are some of the major advantages of public key cryptography over symmetric key encryption: 
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I. Eliminates Key Distribution Problem 

The biggest fundamental advantage of public key encryption is it solves the key exchange problem 

that plagued encryption for centuries. Communicating parties do not need to have exchanged a 

secret key beforehand to privately share messages using public-key algorithms. 

 

II. Enables Secure Communication over Public Channels 

Public key systems enable confidential and authenticated communication over media like the 

internet where it may not be feasible to exchange keys securely prior to transmitting information. 

This has enabled ecommerce, email encryption, virtual private networks, IoT security etc. 

  

III. Decouples Identity from Key Distribution  

The owner of the private key can publish the public key freely without revealing identity. Others 

can use the public key to ensure only the designated party with matching private key has access. 

This provides verification of identity and restricts access control. 

 

IV. Digital Signatures  

Hashing message + using private key to encrypt the hash = digital signature which validates 

integrity and authenticates the signer due to private key binding. Allow non-repudiation. 

 

V. Key Management Simplification 

Only private keys need management and protection by respective owners. All corresponding 

public keys can be shared openly without secrecy channels or access controls around 

publishing/distribution. 

 

VI. Retrospective Secrecy  

Messages can be securely time-stamped when sent even if keys not exchanged at that time. Later 

when public keys are available, the historical information can be decrypted unlike symmetric 

encryption. 

In summary, public key encryption revolutionary enabled global communication security at scale 

over untrusted networks in a fundamentally different manner not achievable for thousands of years 

using any historical cipher system dependent on key secrecy. 
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2.4. Why RSA algorithm is used 

When Ron Rivest, Adi Shamir, and Len Adleman publicly introduced the RSA algorithm in 1977, 

it fundamentally transformed secure communication by introducing: 

I. Practical implementation of public-key cryptography  

The novel concept that a public key can be openly distributed to encrypt messages but only the 

private key holder can decrypt them, without needing to secretly pre-share a private key. 

II. First system to enable both secrecy and authentication 

Prior ciphers like DES and AES enabled secrecy. But public key encryption also enabled digital 

signatures for authenticity and non-repudibility using the binding between a user's identity and 

their private key. 

III. Algorithm security relying on computational complexity 

Rather than secrecy of algorithm or key size, RSA security relies on the practical difficulty for 

anyone to factor extremely large integers - a natural "one-way trapdoor" mathematical function 

rather than obscurity. This moved cryptography from reliance on Shannon's information theoretic 

security to complexity assumptions. 

 

Monumental Real-world Impact 

The RSA public-key encryption gave the biggest functional leap in cryptographic capability since 

polyalphabetic ciphers emerged centuries prior. It serves as the fundamental basis for numerous 

pivotal contributions shaping modern information security:  

- Authentication to establish secure identities digitally 

- Integrity assurances on data using public-key digital signatures 

- Establishing confidential and tamper-proof channels for financial transactions over the internet 

- Secure Socket Layer (SSL) for web traffic encryption tied to identity certification 

- Protecting sensitive data like healthcare records under data privacy regulations 

 

RSA became essential security backbone for contemporary computing and ecommerce as we know 

it. The sheer ubiquity of RSA usage across internet infrastructure today protecting identities, 

communication, intellectual property and privacy highlights the monumental real-world impact 

more than any other cryptographic development over history.   
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Thus, both conceptually and in global implementation, RSA's transformation of modern 

cryptography is unparalleled in making 'public-key encryption' integral to present-day security 

solutions. Its multifaceted contributions have resonated wider and beyond cipher research to 

profoundly shaping computing progress globally over the last four decades. 

 

I. Enabling secure communication - RSA laid the foundations for public-key cryptography 

and enabled secure digital communication by providing mechanism for 

encryption/decryption using public/private key pairs. This protects confidentiality. 

II. Securing the internet - Protocols like SSL/TLS which rely on RSA encrypt the traffic and 

connections between websites and web browsers. This protects sensitive data like banking 

transactions done online. Much of the modern internet is secured by RSA. 

III. Signing of documents - The private key can sign messages or documents digitally and the 

signature can be verified by anyone with the public key. This ensures authenticity and non-

repudiation which are crucial for modern business. 

IV. Certificate authorities - Trusted third parties digitally sign certificates used for identity 

verification in public key infrastructure. RSA secure keys underpin the certificate authority 

ecosystem on the internet. 

V. Versatile and adaptable - RSA cryptography has withstood 4 decades of extensive 

cryptanalysis which highlights its outstanding versatility. It can be readily adapted for a 

variety of applications beyond what its inventors imagined. 

VI. Interoperable standards - RSA became integral to many widely used security standards 

like PKCS for cryptography, X.509 for PKI and more. This interoperability makes RSA 

indispensable. 

In summary, RSA forms the basic layer of trust and confidence on which much of digital 

communication, internet-based commerce and identity verification operates safely using 

cryptographic principles like confidentiality, authenticity and non-repudiation. It will likely 

continue as a dominant asymmetric algorithm for foreseeable future. 

 

2.5. Problem statement  

Cryptography techniques enable securing sensitive data communication between two remote 

parties. Historical ciphers relied on the same secret keys for encryption and decryption but faced 
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key distribution challenges. The revolutionary RSA (Rivest–Shamir–Adleman) public key 

cryptosystem overcame this by using separate public and private keys. 

Despite RSA's widespread global adoption securing transactions across banking, communications 

and commerce, its mathematical foundations like prime number generation, totient calculation and 

modular exponentiation remain poorly understood by most software developers employing 

cryptography for application security. 

This underscores the knowledge gap on fundamental information security concepts underlying 

modern cryptosystems. The analytical skills to properly generate keys, encrypt plaintexts, decrypt 

ciphertexts and understand cryptographic assumptions are essential for engineers implementing 

security solutions.  

 

This project aims to provide an in-depth understanding of the RSA scheme by studying and 

implementing it in code. Focus areas will cover cryptographic basics of key generation, deriving 

public and private exponents, and encryption/decryption. Outcomes include gaining practical 

ability to properly deploy RSA in software applications along with theoretical insights on 

computational complexity foundations central to RSA's security." The problem statement 

highlights the knowledge gap, emphasizes the importance of core concepts for usage of 

cryptography by developers, and defines focus areas for the project on RSA and its mathematical 

basis to enhance understanding. 

 

2.6. OBJECTIVES 

I. To learn the Mathematical Concepts Behind RSA 

II. To analyze the RSA Encryption and Decryption Processes  

III. To implement RSA in Code Using C Programming Language 

IV. To test and Verify RSA Implementation 

The focus areas now cover the essential concepts, implementation, and verification aspects for 

getting hands-on understanding of employing RSA cryptography for secure communication.
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Chapter 3 

Literature review 

 

The RSA algorithm is one of the first public-key cryptosystems and is widely used for secure data 

transmission. RSA stands for Rivest, Shamir, and Adleman, who first publicly described it in 1977 

(Rivest et al. 1977). RSA is an algorithm for public-key cryptography that is based on the presumed 

difficulty of factoring large prime numbers. The strength of RSA relies on the practical difficulty 

of factoring the product of two large prime numbers, which makes it suited for use in both public 

key encryption and digital signatures. A public key system such as RSA can generate keys to 

encrypt messages sent between two parties, without the need to exchange a secret key. This makes 

it more convenient than symmetric key encryption which requires some secure channel for key 

exchange. The RSA algorithm has become the de facto standard for data encryption and is widely 

implemented in secure transmission protocols on the internet. 

 

3.1. Key Generation 

The RSA algorithm works by generating a user's public and private keys based on two large prime 

numbers. The basic principle is that it is easier to multiply large numbers together than it is to 

factor their product. The private key consists of the two prime factors ‘p’ and ‘q’. The public key 

is derived from p, q and two additional values. First ‘n’, which is simply the product of ‘p’ and ‘q’. 

Second ‘e’, which is chosen such that it is coprime to (p-1) * (q-1). This means ‘e’ has no common 

factors with (p-1) * (q-1) other than 1. The security of RSA relies on the inability for anyone 

without ‘p’ and ‘q’ to determine them from ‘n’ and other publicly available information. Several 

requirements govern the choice of ‘p’, ‘q’ and ‘e’ to ensure security. First ‘p’ and ‘q’ themselves 

should both be large primes of similar bit length. Typically, 1024-2048 bits long each in modern 

applications. Second ‘e’ must be greater than 1 and coprime to (p-1) * (q-1). 65537 is a commonly 

used standard value for ‘e’. Once ‘p’, ‘q’ and ‘e’ are chosen, the public key is (n, e) and the private 

key is (p, q). The encryption and decryption procedures involve exponentiating messages using 

the keys.  
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3.2. RSA Encryption Scheme 

The RSA encryption scheme works as follows: 

   

1. Alice wishes to send a plaintext message ‘m’ to Bob 

2. Bob has published his public key (n, e)  

3. Alice then computes the ciphertext c = me (mod n) using Bob's public key 

4. She sends c to Bob through an insecure channel  

5. Bob can decrypt c by computing m = cd (mod n) using his private key exponents ‘d’ 

The decryption works because Bob has the factors p and q allowing him to compute the modular 

multiplicative inverse of e modulo (p-1) * (q-1). This value ‘d’ satisfies ed ≡ 1 (mod (p-1)*(q-1)). 

So, by exponentiating the ciphertext using ‘d’, Bob recovers Alice’s original plaintext message 

‘m’. The security of RSA relies on the difficulty of factorizing ‘n’. Anyone who knows ‘p’ and ‘q’ 

can also compute ‘d’ and decrypt messages. But if ‘p’ and ‘q’ remain secret, the system remains 

secure. This makes careful selection of large random primes ‘p’ and ‘q’ critical. 

 

3.3. Implementation Challenges 

While simple in principle, there are many challenges that arise implementing RSA encryption in a 

secure way. These include: 

1. Generation of ‘p’ and ‘q’ - Properly generating the initial random primes ‘p’ and ‘q’. Poor 

sources of randomness lead to predictable keys that are vulnerable. 

2. Preventing mathematical attacks - Several attacks exist if ‘p’ and ‘q’ are too small or 

improperly selected. 

3. Timing and power attacks - Care must be taken to implement RSA resistant to real world side 

channel attacks.  

4. Optimize performance - Computing large exponentiations is computationally intensive and 

must be optimized for efficiency. 

5. Key distribution and certificate management - Establishing trust of public keys for 

authenticity. 

Research on RSA has worked to address all these challenges and several standards now exist 

detailing proper implementation. Compliance with PKCS and FIPS standards are required for 

commercial and government applications. When properly implemented and used within its design 
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parameters for key length, RSA has withstood attacks for over 30 years. However continued 

research in cryptanalysis and quantum computing demonstrates the need to migrate to larger key 

sizes or future post-quantum schemes. 

In summary, RSA established the concept of public-key cryptography and paved the way for 

secure internet commerce protocols. While mathematically simple at its core, significant research 

and standards exist detailing proper implementation to ensure security. RSA will likely remain an 

algorithm of historical significance even as the keys size and computational overhead necessitate 

a gradual transition to more modern schemes in the future. 
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 Chapter 4 

 Methodology 

Understanding the mathematical concept behind RSA 

 

4.1. Prime numbers [46] 

Prime numbers play an essential role in the security of many cryptosystems that are currently being 

implemented. One such cryptosystem, the RSA cryptosystem, is today’s most popular public-key 

cryptosystem used for securing sensitive information. The security of the RSA cryptosystem lies 

in the difficulty of factoring an integer that is the product of two large prime numbers. Several 

businesses rely on the RSA cryptosystem for making sure that sensitive information does not end 

up in the wrong hands. 

Throughout history, there has been a need for secure, or private, communication. In war, it would 

be devastating for the opposing side to intercept information during communication over an 

insecure line about the plan of attack. With all of the information that is stored on the internet 

today, it is important that sensitive information, such as a person’s credit card number, is stored 

securely. 

Cryptosystems, or ciphers, use a key, or keys, for encrypting and decrypting information being 

communicated with the intention of keeping this information out of the hands of unwanted 

recipients. Prior to the 1970s, the keys used in cryptosystems had to be agreed upon and kept 

private between the originator, or sender, of a message and the intended recipient. This made it 

difficult to achieve secure communication for two parties far from one another because they would 

have to find another means of secure communication to agree upon the keys of the cryptosystem 

begin used. Such ciphers, where the encryption/decryption keys must be kept private between the 

originator and intended recipient, are called symmetric-key ciphers. 

As technology increased, the security of symmetric-key ciphers became more vulnerable. It was 

not until the 1970s that a more secure cryptosystem, the RSA cryptosystem, was made public by 

Rivest, Shamir and Adleman, three MIT researchers. The RSA cipher, when implemented 

appropriately, is still considered to be an unbreakable cipher. It was the first specific type of 

asymmetric-key cipher, or public-key cipher, meaning that two parties could publicly agree upon 

encryption keys over an insecure communication line and not compromise the security of the 

cipher. The security of the RSA cipher comes from the general difficulties of factoring integers 
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that are the product of two large prime numbers. The level of security for the RSA cipher increases 

as the size of the prime numbers used for determining the encryption key increases. Modern 

implementations of the RSA cipher require that the prime numbers for determining the encryption 

key be very large, hundreds of digits in length. 

 

4.1.1. The Euclidean Division Algorithm  

The Euclidean algorithm is a historically famous mathematical algorithm that was described 

around 300 BC and provides efficient methods for finding greatest common divisors and 

multiplicative inverses for modular arithmetic when the modulus is large, as in the case of RSA 

ciphers. First, we will discuss the initial part of the Euclidean algorithm, which can be used for 

determining greatest common divisors of two positive integers. 

Let ‘a’ and ‘b’ be positive integers with a > b. Suppose we want to determine the greatest common 

divisor of ‘a’ and ‘b’, or gcd(a, b). If b|a, it follows then that gcd(a, b) = b. Otherwise, if b - a, we 

can find gcd(a, b) by applying the Euclidean algorithm and using repeated division. We first divide 

‘b’ into ‘a’ to obtain the quotient q1 and the non-negative remainder r1, where r1 < b. We can now 

write  

a = q1b + r1                                                                                              (i) 

 Next, we divide r1 into b and obtain the quotient q2 and positive remainder r2, where r2 < r1 < b. 

Then we write 

b = q2 r1 + r2                                                                                          (ii)                                                                                                          

We repeat this process until the remainder equals zero. The following is the general equation 

resulting from the nth division.  

rn-2 = qn rn-1 + rn                                                                                        (iii) 

 If the next division yields a 0 remainder (rn-1 = qn+1rn), then it follows that gcd(a, b) = rn. As 

mentioned, we can use the Euclidean algorithm for determining multiplicative inverses for 

modular arithmetic. The following theorem provides the basis for this concept. 

 

Theorem 1. If a and b are integers with at least one nonzero, then there exist integers ‘s’ and ‘t’ 

such that gcd(a, b) = as + bt.  

Let a and n be positive integers with gcd(a, n) = 1. We wish to find a_1 (mod n). Since gcd(a, n) = 

1, it follows from the above theorem that there exist integers s and t such that, 
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1 = sn + ta.                                                            (iv) 

We can then solve the above equation for ta, which yields  

ta = 1− sn.                                                              (v) 

Reducing this equation modulo n will give the following. 

ta ≡ (1 − sn) (mod n)                                                  (vi) 

ta≡ (1 − 0) (mod n)                                                  (vii) 

ta≡1 (mod n)                                                      (viii) 

Hence, ta≡1 (mod n) and it follows that the value of t (mod n) is equivalent to a-1 (mod n). 

 

4.2. Modular Division’s Crucial Role in RSA [47] 

In the RSA cryptosystem, modular division forms the bedrock of both encryption and decryption 

processes. It enables computations within a finite ring defined by a modulus, ensuring that results 

“wrap around” to the beginning of the ring when exceeding its limits. This characteristic is 

essential for several key aspects of RSA. 

 

I. Efficient Handling of Large Integers: RSA relies on large prime numbers for security. 

Modular division allows exponentiation of these numbers with significantly lower memory 

consumption compared to integer arithmetic or other ring structures. This is because 

calculations only require manipulating digits within the modulus’s range, avoiding large 

intermediate values. 

 

II. Mathematical Properties and Security: The mathematical closure property of modular 

rings guarantees that all operations, including exponentiation, remain within the chosen 

ring. This property is crucial for RSA’s security: modularity makes it computationally 

infeasible to recover the plaintext message from the ciphertext even if the public key is 

known, due to the difficulty of factoring the large modulus. 

 

III. Streamlined Implementation and Optimization: Modular division facilitates efficient 

implementations of modular exponentiation, which is the core operation in both RSA 

encryption and decryption. Advanced optimized techniques exploit properties of modular 

arithmetic to accelerate computations, making RSA practical for real-world applications. 
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4.3. Chinese Remainder Theorem [45] 

The Chinese Remainder Theorem is a mathematical theorem that provides a method to uniquely 

determine a number ‘n’ given its remainders when divided by several moduli that are pairwise 

coprime.  

Some key applications of the Chinese Remainder Theorem are: 

I. Computing and Algorithm Design: It allows converting large integer operations into 

smaller modular arithmetic operations which can speed up computations. 

II. Coding Theory & Cryptography: Used in error correction codes and in speeding up 

computations in RSA encryption/decryption by converting the large exponentiation into 

smaller modular exponentiations. 

The text discusses a robust version of the Chinese Remainder Theorem which is resilient to small 

errors in the remainders. A necessary and sufficient condition for robust reconstruction is derived. 

The performance of traditional vs robust CRT is analyzed.  The historical origins of the theorem 

in Chinese mathematics texts dating back to as early as the 3rd century AD are outlined. Later 

developments in using the CRT to optimize RSA calculations are described - by precomputing 

values based on the factorization of the modulus, the private key exponentiation can be split into 

two shorter exponentiations modulo the factor’s ‘p’ and ‘q’, providing around 4x speedup.  

In summary, the Chinese Remainder Theorem has both theoretical elegance as well as wide 

ranging applications in computing and cryptography due to its ability to reduce large integer 

operations into smaller modular pieces. Both historical and modern perspectives on applying the 

CRT are covered. 

 

4.4. RSA Algorithm 

The mathematical concept on which RSA algorithm works is 

1. Key Generation 

- Choose two very large random prime numbers p and q. 

- Compute modulus n = p * q 

- Calculate totient φ(n) = (p-1) * (q-1)   

- Select encryption exponent e co-prime to φ(n)  
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2. Encryption  

Sender encrypts message m using receiver's public key (e, n): 

c = me (mod n) 

This can be calculated efficiently by anyone since the public key is openly shared. 

 

  

Figure 1- encoding of code 
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3. Decryption 

Receiver decrypts the ciphertext c using their private key (d, n):   

m = cd (mod n) 

This relies on the number theoretic relationship of d to retrieve the original message m. 

 

 

 

Figure 2 - Decoding of the code 

 

Only the designated private key holder can decrypt messages encrypted with the corresponding 

public key. This asymmetric encryption and decryption via mathematically linked key pairs 

eliminates the need to secretly exchange a shared key as necessary with symmetric ciphers. RSA 

public key encryption enabled secure communication channels over public networks also ushering 

in an era of secure ecommerce and internet-based financial transactions. 
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Chapter 5 

Coding and language 

 

5.1. C Programming: The Foundation for Efficient and Portable Code [51] 

C is a programming language developed at AT   & T’s Bell Laboratories of USA in 1972. It was 

designed and written by a man named Dennis Ritchie. In the late seventies C began to replace the 

more familiar languages of that time like PL/I, ALGOL, etc. No one pushed C. It wasn’t made the 

‘official’ Bell Labs language. Thus, without any advertisement, C’s reputation spread and its pool 

of users grew. Ritchie seems to have been rather surprised that so many programmers preferred C 

to older languages like FORTRAN or PL/I, or the newer ones like Pascal and APL. But, that’s 

what happened. Possibly why C seems so popular is because it is reliable, simple and easy to use. 

Moreover, in an industry where newer languages, tools and technologies emerge and vanish day 

in and day out, a language that has survived for more than three decades has to be really good. An 

opinion that is often heard today is- “C has been already superseded by languages like C++, C# 

and Java, so why bother to learn C today”. I seriously beg to differ with this opinion. There are 

several reasons for this. These are as follows: 

 

(a) C++, C# or Java make use of a principle called Object Oriented Programming (OOP) to 

organize the program. This organizing principle has lots of advantages to offer. But even while 

using this organizing principle you would still need a good hold over the language elements of C 

and the basic programming skills. So, it makes more sense to first learn C and then migrate to C++, 

C# and Java. Though this two-step learning process may take more time, but at the end of it you 

will definitely find it worth the trouble. 

 

(b) Major parts of popular operating systems like Windows, UNIX, Linux and Android are written 

in C. This is because even today when it comes to performance (speed of execution) nothing beats 

C. Moreover, if one is to extend the operating system to work with new devices one needs to write 

device driver programs. These programs are exclusively written in C. 

 

(c) Mobile devices like Smartphones and Tablets have become rage of today. Also, common 

consumer devices like microwave ovens, washing machines and digital cameras are getting 
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smarter by the day. This smartness comes from a microprocessor, an operating system and a 

program embedded in these devices. These programs not only have to run fast but also have to 

work in limited amount of memory. No wonder that such programs are written in C. With these 

constraints on time and space, C is the language of choice while building such operating systems 

and programs. 

 

(d) You must have seen several professional 3D computer games where the user navigates some 

object, like say a spaceship and fires bullets at the invaders. The essence of all such games is speed. 

Needless to say, such games won’t become popular if they take a long time to move the spaceship 

or to fire a bullet. To match the expectations of the player the game has to react fast to the user 

inputs. This is where C language scores over other languages. Many popular gaming frameworks 

(like DirectX) have been built using C language. 

 

(e) At times one is required to very closely interact with the hardware devices. Since C provides 

several language elements that make this interaction feasible without compromising the 

performance, it is the preferred choice of the programmer. I hope that these are very convincing 

reasons why you should adopt C as the first, and a very important step, in your quest for learning 

programming.  

 

5.2. SDLC and RSA implementation: A Collaborative Approach 

The Software Development Life Cycle (SDLC) provides a structured framework for developing 

software, and its principles are highly relevant to implementing the RSA algorithm effectively in 

C. SDLC outlines a series of phases, each with specific tasks and deliverables, aiming to guide 

development from inception to deployment and maintenance. Common SDLC models include 

Waterfall, Agile, and Iterative. 

 

5.2.1. RSA Implementation and SDLC Phases: 

1. Problem identification or Requirement Analysis 

2. System Design and Architecture 

3. Detailed Design and Implementation 

4. coding 
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5. Testing and Verification 

6. Implementation and Maintenance 

 

5.2.2. Benefits of Linking SDLC and RSA: 

Structured Development: SDLC provides a roadmap for efficient implementation, avoiding 

haphazard coding and ensuring quality. 

Security Focus: Security best practices are integrated throughout the SDLC, leading to a more 

robust RSA implementation. 

Maintainability and Flexibility: SDLC principles promote modularity and documentation, 

making the code easier to maintain and adapt over time. 

Clear Requirements: Defining goals and functionalities upfront (early SDLC phase) ensures the 

RSA implementation fulfills its intended purpose. 

 

5.2.3. Let’s, discuss about the phases of SDLC in detail 

1. Problem identification or Requirement Analysis. 

Problem: Developers need a well-designed and documented C implementation of the RSA 

encryption and decryption algorithms to gain practical experience and integrate secure 

communication into their applications. 

 

I. Requirements: 

i. Functionality: 

• Generate public and private key pairs based on large prime numbers. 

• Implement modular exponentiation for encryption and decryption. 

• Support message input and output (plaintext and ciphertext). 

• Handle different message sizes (e.g., character input, larger data files). 

• Offer an option to specify key lengths (moduli size). 

 

ii. Implementation: 

• Use clear and efficient C code with proper variable naming and comments. 

• Adhere to standard C libraries and practices for security and memory management. 

• Consider modularity and reusability of the code. 
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iii. Testing and Verification: 

• Include unit tests for key generation, encryption, and decryption. 

• Validate functionality with various message sizes and key lengths. 

• Analyze performance against benchmarks or expected complexity. 

 

iv. Documentation: 

• Provide clear instructions for building and using the implementation. 

• Explain the RSA algorithm and code logic with comments and documentation. 

• Make the code readable and understandable for developers. 

 

v. Focus Areas: 

• Develop a working and efficient C implementation of RSA. 

• Ensure correctness and robustness through testing and verification. 

• Create well-documented and user-friendly code for others to use. 

 

vi. Additional Considerations: 

• Define the specific encryption/decryption modes to be implemented (e.g., OAEP, PKCS#1 

v1.5). 

• Specify the chosen libraries or tools for large integer arithmetic (e.g., GMP). 

• Establish coding standards and conventions to follow (e.g., MISRA C). 

• Plan for performance optimization depending on usage scenarios. 

 

vii. Deliverables: 

• C source code for RSA implementation with build instructions. 

• Documentation explaining the code, usage, and testing strategies. 

• Unit tests and performance analysis results. 

• By focusing on these requirements and considerations, you can develop a valuable C 

implementation of RSA that fosters practical understanding and secure application 

integration for developers. 
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2. Feasibility study 

Feasibility Study of RSA Implementation in C Language 

I. Technical Feasibility: 

i. Highly feasible: 

C is a well-suited language for cryptographic implementations due to its low-level access and 

efficiency. Existing libraries like GMP (GNU Multiple Precision Arithmetic Library) handle large 

integer arithmetic needed for RSA. Numerous well-documented RSA implementations in C exist 

for reference and guidance. 

 

ii. Challenges: 

• Optimizing performance for large key sizes and message lengths might require advanced 

techniques. 

• Ensuring proper security practices (e.g., randomness, padding schemes) is crucial and 

requires careful implementation. 

• Balancing ease of use with code clarity and efficiency can be challenging. 

 

II. Economic Feasibility: 

i. Highly feasible: 

• Open-source libraries and resources for C and RSA are readily available, minimizing 

development costs. 

• The project primarily requires developer time and expertise, which can be managed based 

on available resources. 

 

ii. Challenges: 

• If custom libraries or tools are needed, development and maintenance costs could increase. 

• Additional security audits or performance optimizations might add costs depending on 

requirements. 
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III. Schedule Feasibility: 

i. Moderately feasible: 

• Depending on the scope and desired level of complexity, implementation time can vary. 

• A basic functional implementation might be achievable within a few weeks for an 

experienced developer. 

• Extensive testing, optimization, and documentation can extend the timeline. 

 

ii. Challenges: 

• Balancing feature completeness with development time requires careful planning and 

prioritization. 

• Unexpected technical hurdles or security considerations could impact the schedule. 

 

IV. Operational Feasibility: 

i. Highly feasible: 

C language and libraries like GMP are well-supported and widely used on various platforms. 

The code can be integrated into different applications with minimal dependencies. 

 

ii. Challenges: 

• Ensuring compatibility across different C compilers and environments might require 

adjustments. 

• Keeping the code up-to-date with security patches and library updates is important. 

 

V. Overall Feasibility: 

Highly feasible. Implementing RSA in C is technically achievable, economically viable, and can 

be completed within a reasonable timeframe. Careful planning, leveraging existing resources, and 

focusing on essential features will maximize success. 

 

VI. Additional Considerations: 

• Defining the specific scope of the implementation (e.g., key lengths, message sizes, 

additional features). 

• Identifying target platforms and ensuring portability. 
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• Establishing clear security best practices and testing procedures. 

• Considering the potential for future maintenance and updates. 

• By addressing these factors, you can confidently proceed with developing a valuable and 

functional RSA implementation in C language. 

 

3. System Design and Architecture: 

I. Phase 1: Requirements Gathering and Analysis 

• Define the specific goals and functionalities of the implementation (e.g., key generation 

range, supported message sizes, encryption modes). 

• Identify target users and their technical skills (e.g., developers, students). 

• Research existing RSA implementations in C, libraries like GMP, and relevant coding 

standards (e.g., MISRA C). 

• Conduct a preliminary feasibility study considering technical, economic, and schedule 

constraints. 

 

II. Phase 2: System Design and Architecture 

• Choose a suitable SDLC methodology (e.g., Waterfall, Agile). 

• Define the high-level system architecture outlining modules and their interactions (e.g., 

key generation, encryption/decryption, I/O). 

• Select appropriate data structures and algorithms based on performance and memory 

requirements. 

• Identify external libraries or tools to be used (e.g., GMP for large integer arithmetic). 

• Establish security best practices, including randomness, padding schemes, and error 

handling. 

III. Phase 3: Detailed Design and Implementation 

• Design detailed module interfaces, specifications, and internal algorithms. 

• Implement individual modules in C, ensuring code clarity, commenting, and modularity. 

• Integrate modules and libraries, ensuring proper data flow and error handling. 

• Focus on code security following chosen best practices and standards. 
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IV. Phase 4: Testing and Verification 

• Develop unit tests for individual modules and their functionalities. 

• Conduct integration testing to ensure modules work together seamlessly. 

• Design system-level tests for various key lengths, message sizes, and edge cases. 

• Include performance testing to analyze speed and memory usage. 

• Utilize debugging tools and code review techniques to identify and fix issues. 

 

V. Phase 5: Deployment and Maintenance 

• Provide clear documentation for building, installing, and using the implementation. 

• Offer examples and usage instructions for different user groups. 

• Consider packaging the code and documentation for wider distribution. 

• Establish a maintenance plan for addressing future bugs, security updates, or feature 

enhancements. 

 

VI. Additional Considerations: 

• Version control system for code management and tracking changes. 

• Adherence to coding standards for consistency and maintainability. 

• Security audits or penetration testing for vulnerabilities, especially if used in critical 

applications. 

• User feedback and community involvement for continuous improvement. 

• By following these design steps and addressing the key aspects, you can develop a robust, 

secure, and well-documented RSA implementation in C that meets your project goals and 

provides value to users. 

 

4. Coding 

The coding phase of implementing RSA in C language is crucial and consists of the following 

steps: 

I. Module Design and Implementation: 

i. Key Generation Module: 

Implement functions to generate large random prime numbers using Miller-Rabin primality 

testing. 
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• Calculate public modulus (n) and totient function (phi). 

• Choose a public exponent (e) relatively prime to phi. 

• Calculate the private exponent (d) using modular inverse. 

 

ii. Encryption Module: 

• Implement modular exponentiation for encryption using the public key (n, e). 

• Handle various message formats (e.g., string, byte array) and padding schemes (e.g., 

OAEP). 

• Ensure proper memory management and error handling. 

 

iii. Decryption Module: 

• Implement modular exponentiation for decryption using the private key (n, d). 

• Reverse any applied padding schemes in the encrypted message. 

• Verify message integrity and handle decryption errors gracefully. 

 

iv. Utility Modules: 

• Implement helper functions for modular arithmetic, random number generation, memory 

allocation, and input/output operations. 

• Ensure portability and compatibility across different C compilers and environments. 

 

2. Coding Practices: 

I. Clarity and Readability: 

• Use meaningful variable names, comments, and code formatting for ease of understanding. 

• Follow consistent coding conventions and style guides. 

 

II. Modularity and Reusability: 

• Structure code into well-defined functions and modules for maintainability and future 

enhancements. 

• Consider designing generic functions for easier adaptation to different scenarios. 
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III. Efficiency and Performance: 

• Choose efficient algorithms and data structures suitable for the expected key sizes and 

message lengths. 

• Consider optimization techniques where performance is critical. 

 

IV. Security Best Practices: 

• Use well-established cryptographic libraries and tools like GMP. 

• Implement randomness properly for key generation and padding schemes. 

• Avoid security vulnerabilities like buffer overflows and integer overflows. 

 

V. Testing and Debugging: 

• Write unit tests for individual functions and modules to ensure correctness. 

• Use debugging tools and techniques to identify and fix issues efficiently. 

• Consider code reviews by other developers for security and best practices. 

 

3. Integration and Testing: 

• Integrate individual modules and libraries, ensuring proper data flow and functionality. 

• Conduct thorough testing with various key lengths, message sizes, and edge cases. 

• Perform performance testing to evaluate speed and memory usage under different 

workloads. 

• Iterate on the code based on test results and feedback to improve accuracy and 

performance. 

 

4. Documentation and Packaging: 

• Write clear and concise documentation explaining the implemented algorithms, code 

structure, usage instructions, and limitations. 

• Provide examples and tutorials for different use cases and user groups. 

• Consider packaging the code and documentation as a reusable library or resource for other 

developers. 
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Remember, this is a general overview of the coding phase in SDLC for RSA implementation. The 

specific implementation details and complexities will vary depending on your project's specific 

requirements and scope. 

 

5. Testing 

Testing is crucial for ensuring the reliability and security of your RSA implementation in C. Here's 

an overview of the testing phase in SDLC: 

 

I. Types of Testing: 

i. Unit Testing: 

• Test individual functions and modules in isolation with various inputs and expected 

outputs. 

• Verify core functionalities like key generation, encryption, decryption, and modular 

exponentiation. 

• Use libraries like Google Test or CUnit for automated testing and coverage reports. 

 

ii. Integration Testing: 

• Test how modules interact with each other and ensure seamless data flow. 

• Test functionalities across different combinations of key lengths, message sizes, and 

encryption modes. 

• Write scenarios simulating expected user interactions and error handling. 

 

iii. System Testing: 

• Test the complete RSA implementation as a whole with realistic use cases and scenarios. 

• Evaluate overall functionality, performance, and user experience. 

• Include negative testing to identify vulnerabilities and edge cases. 

 

iv. Security Testing: 

• Conduct penetration testing to identify potential security vulnerabilities in the 

implementation. 

• Use tools like Metasploit or Burp Suite to simulate real-world attacks. 
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• Verify cryptographic strength against known attacks like chosen-plaintext attacks or 

padding oracle attacks. 

v. Performance Testing: 

• Measure the speed and resource usage of the implementation under different loads and key 

lengths. 

• Identify bottlenecks and potential optimizations for efficiency. 

• Use benchmarking tools like JMeter or LoadRunner to compare performance with other 

implementations. 

 

vi. Testing Approaches: 

• White-box testing: Understand the internal code structure to design targeted tests. 

• Black-box testing: Treat the RSA implementation as a black box and test functionality 

without internal knowledge. 

• Combination of both: Utilize both approaches for comprehensive coverage. 

 

vii. Additional Considerations: 

• Automated testing: Implement automated tests wherever possible for efficiency and 

repeatability. 

• Test coverage: Aim for high test coverage to ensure most code paths are tested. 

• Test documentation: Document test cases, procedures, and expected results for future 

reference. 

• Continuous testing: Integrate testing throughout the development cycle for early feedback 

and bug detection. 

By incorporating these testing methods and considerations, you can ensure your C implementation 

of RSA is robust, secure, and performs well under various conditions. Remember, thorough testing 

is critical for building trust and confidence in your implementation. 

 

6. Implementation and maintenance. 

I. Implementation: 

i. Coding Environment: 
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Set up a development environment with necessary tools like a C compiler, debugger, code editor, 

and version control system (e.g., Git). 

Consider using integrated development environments (IDEs) like Eclipse or Visual Studio for 

advanced features and debugging aids. 

 

ii. Build System: 

Implement a build system (e.g., Make, CMake) to automate compilation, linking, and dependency 

management. 

This ensures consistent builds across different platforms and simplifies project management. 

 

iii. Module Organization: 

Organize code into well-defined modules with clear interfaces and responsibilities. 

This promotes modularity, reusability, and easier maintenance. 

 

iv. Coding Standards: 

• Follow established coding standards (e.g., MISRA C) for consistency, readability, and 

maintainability. 

• Consistent formatting and naming conventions improve collaboration and reduce errors. 

v. Unit Testing: 

• Implement unit tests for individual modules as you code to ensure correctness and facilitate 

debugging. 

• Automated testing frameworks like Google Test or CUnit help manage and run tests 

efficiently. 

vi. Code Documentation: 

• Add comments and documentation within the code to explain algorithms, data structures, 

and complex logic. 

• Clear documentation enables easier understanding and future maintenance. 

II. Maintenance: 

i. Version Control: 

• Use a version control system to track changes, revert to previous versions, and manage 

collaboration effectively. 
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• This allows revisiting previous versions, resolving conflicts, and maintaining a history of 

modifications. 

• Continuous Integration and Continuous Delivery (CI/CD): 

• Consider implementing a CI/CD pipeline to automate testing, building, and deployment 

processes. 

• This enables faster updates, fewer errors, and simplifies maintenance activities. 

 

ii. Security Updates: 

• Stay updated with vulnerabilities and security patches for libraries and dependencies used 

in your implementation. 

• Proactive updates are crucial to address potential security risks. 

 

iii. Bug Fixes and Enhancements: 

• Address reported bugs and identified shortcomings promptly to maintain code quality and 

user satisfaction. 

• Consider user feedback and potential enhancements to improve the implementation over 

time. 

iv. Code Reviews: 

• Regularly conduct code reviews by other developers to identify potential issues, improve 

coding practices, and ensure ongoing maintainability. 

• Fresh perspectives can reveal flaws and suggest better approaches. 

 

III. Additional Considerations: 

i. Performance Optimization: 

• Profile your code to identify performance bottlenecks and consider optimizations where 

necessary. 

• Striking a balance between security, efficiency, and resource usage is important. 

ii. Community Engagement: 

• Consider releasing your code as open-source to enable community contributions and 

further improve its longevity. 

• Community involvement can bring diverse perspectives and expertise to the project. 
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By following these implementation and maintenance practices, you can ensure your RSA 

implementation in C remains robust, secure, and well-maintained over time. Remember, ongoing 

attention to code quality and security is crucial for reliable and trustworthy cryptography 

applications. 

5.2. Unveiling the Power of RSA: A C Programming Approach 

5.2.1. RSA Integer Encryption/Decryption: A C Programming Example  

p = 61 

q = 53 

e = 17 

#include <stdio.h> 

#include <stdint.h> 

#include <math.h> 

 

// Function to calculate gcd 

int gcd(int a, int b) { 

    int temp; 

    while (1) { 

        temp = a % b; 

        if (temp == 0) 

          return b; 

        a = b; 

        b = temp; 

    } 

} 

 

// Fast exponentiation modulo function 

uint64_t modPow(uint64_t base, uint64_t exp, uint64_t mod) { 

    uint64_t result = 1; 

    while (exp > 0) { 

        if (exp % 2 == 1) { 

            result = (result * base) % mod; 
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        } 

        exp = exp >> 1; 

        base = (base * base) % mod; 

    } 

    return result; 

} 

 

int main() { 

    // Two prime numbers (should be large in a real application) 

    int p = 61; 

    int q = 53; 

    int n = p * q; 

    int phi = (p - 1) * (q - 1); 

    int e = 17; // Choose e (17 is common choice) 

    int d, k; 

 

    // Compute d, the mod inverse of e 

    // This simple method works only for chosen primes and e 

    for (d = 1; d < phi; d++) { 

        if ((e * d) % phi == 1) 

            break; 

    } 

 

    printf("Public Key: (%d, %d)\n", e, n); 

    printf("Private Key: (%d, %d)\n", d, n); 

 

    // Encrypting a message 

    int message = 123; // A message to encrypt 

    printf("Original Message: %d\n", message); 

 

    uint64_t c = modPow(message, e, n); // Encrypt the message 
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    printf("Encrypted message: %llu\n", c); 

 

    uint64_t m = modPow(c, d, n); // Decrypt the message 

    printf("Decrypted message: %llu\n", m); 

 

    return 0; 

} 

Code output  

 

Figure 3 – Output of the C code 

Explanation of the code  

I. Include Libraries: 

• The program includes necessary standard libraries such as stdio.h, stdint.h, and math.h. 

 

II. Function Definitions: 

• gcd(int a, int b): This function calculates the greatest common divisor (GCD) of two 

integers a and b using the Euclidean algorithm. 

• modPow(uint64_t base, uint64_t exp, uint64_t mod): This function implements fast 

exponentiation modulo, which efficiently calculates (base^exp) % mod. 

 

III. Main Function (‘main()’): 

• Two prime numbers p and q are defined (in this case, 61 and 53, respectively). These values 

are typically much larger in real-world applications. 

• ‘n’ is calculated as the product of p and q, and phi is calculated as ‘(p - 1) * (q - 1)’. 
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• An encryption exponent ‘e’ is chosen (commonly 17), and then the modular inverse ‘d’ of 

‘e’ modulo ‘phi’ is computed using a simple iterative method. 

• Public and private keys are printed to the console. 

• A message (123 in this case) is encrypted using the RSA algorithm and printed as the 

encrypted message. 

• The encrypted message is then decrypted using the RSA algorithm, and the original 

message is printed as the decrypted message. 

 

IV. Encryption and Decryption: 

Encryption: The message is encrypted using the ‘modPow’ function with the public key ‘(e, n)’. 

Decryption: The encrypted message is decrypted using the ‘modPow’ function with the private 

key ‘(d, n)’. 

 

V. Output: 

The program prints the original message, the encrypted message, and the decrypted message to the 

console. 

 

5.2.2. Securing Word with RSA: A C Language Approach 

Test message = He 

H = 71 

E = 101 

e = 17 

 

#include <stdio.h> 

#include <stdint.h> 

#include <math.h> 

 

// Function to calculate gcd 

int gcd(int a, int b) { 

    int temp; 

    while (1) { 
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        temp = a % b; 

        if (temp == 0) 

            return b; 

        a = b; 

        b = temp; 

    } 

} 

 

// Fast exponentiation modulo function 

uint64_t modPow(uint64_t base, uint64_t exp, uint64_t mod) { 

    uint64_t result = 1; 

    while (exp > 0) { 

        if (exp % 2 == 1) { 

            result = (result * base) % mod; 

        } 

        exp = exp >> 1; 

        base = (base * base) % mod; 

    } 

    return result; 

} 

 

int main() { 

    // Prime numbers for letters 'H' and 'E' 

    int H = 71;  

    int E = 101;   

    int n = H * E; 

    int phi = (H - 1) * (E - 1); 

    int e = 17; // Choose e (17 is common choice) 

    int d, k; 

 

    // Compute d, the mod inverse of e 



49 

    // This simple method works only for chosen primes and e 

    for (d = 1; d < phi; d++) { 

        if ((e * d) % phi == 1) 

            break; 

    } 

 

    printf("Public Key: (%d, %d)\n", e, n); 

    printf("Private Key: (%d, %d)\n", d, n); 

 

    // Encrypting a message 

    int H_E = H * 100 + E; // Combine H and E into a two-digit number 

    printf("Original Message: %d\n", H_E); 

 

    uint64_t c = modPow(H_E, e, n); // Encrypt the message 

    printf("Encrypted message: %llu\n", c); 

 

    uint64_t m = modPow(c, d, n); // Decrypt the message 

    int decrypted_H = m / 100; // Extract H 

    int decrypted_E = m % 100; // Extract E 

    printf("Decrypted message: H: %c, E: %c\n", (char)decrypted_H, (char)decrypted_E); 

 

    return 0; 

} 

Code output  
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Explanation of the code 

1. The code starts by including the necessary header files: ‘stdio.h’ for input/output 

operations, ‘stdint.h’ for fixed-width integer types, and ‘math.h’ for mathematical 

functions. 

2. The ‘gcd’ function calculates the greatest common divisor (GCD) of two integers ‘a’ and 

‘b’ using the Euclidean algorithm. This function is used later to compute the modular 

inverse. 

3. The ‘modPow’ function calculates the modular exponentiation ‘(base^exp) % mod’ using 

the square-and-multiply algorithm. This function is used for both encryption and 

decryption operations. 

4. In the ‘main’ function, the program starts by defining the prime numbers ‘H’ (71) and ‘E’ 

(101), which represent values of the letter’s ‘H’ and ‘E’. These primes are chosen for 

simplicity; in real-world applications, much larger prime numbers would be used. 

5. The product ‘n’ of ‘H’ and ‘E’ is computed, and ‘phi’ is calculated as ‘(H - 1) * (E - 1)’, 

which is Euler's totient function. 

6. The public exponent ‘e’ is chosen as 17, which is a common choice for RSA. The private 

exponent ‘d’ is computed as the modular inverse of ‘e’ modulo ‘phi’ using a simple loop. 

7. The program prints the public key ‘(e, n)’ and the private key ‘(d, n)’. 

8. The message ‘H_E’ is encrypted using the ‘modPow’ function with the public key ‘(e, n)’, 

and the resulting ciphertext ‘c’ is printed. 

9. The ciphertext ‘c’ is decrypted using the ‘modPow’ function with the private key ‘(d, n)’, 

and the resulting plaintext ‘m’ is obtained. 

10. The decrypted message is extracted from ‘m’ by separating the values of 'H' and 'E' and 

printing them as characters. 

The RSA algorithm works by using a pair of keys: a public key for encryption and a private key 

for decryption. The public key consists of the modulus ‘n’ and the public exponent ‘e’, while the 

private key consists of the modulus `n` and the private exponent ‘d’. The security of RSA relies 

on the difficulty of factoring large numbers, as the private key ‘d’ can be computed efficiently if 

the prime factors of `n` are known. 
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In this implementation, the code uses small prime numbers (‘H’ and ‘E’) for simplicity, but in real-

world applications, much larger prime numbers (e.g., 1024 or 2048 bits) would be used to ensure 

sufficient security. 

These codes provide a basic demonstration of RSA encryption and decryption using fixed prime 

numbers and a fixed encryption exponent. In practice, RSA implementations use much larger 

prime numbers for security and may employ more sophisticated techniques for key generation and 

management. 
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Chapter 6 

 

Results, Discussion, Conclusion and Future scope 

 

6.1. Results and discussion 

This project aimed to study concepts behind the RSA public-key cryptosystem and implement it 

in C to perform textual message encryption and decryption between two communicating parties. 

The major outcomes are summarized below  

 

Mathematical Concepts Learned 

1. Generating large random primes p and q  

2. Computing n as product pq   

3. Calculating the totient φ(n) 

4. Deriving public and private exponents e and d 

5. Performing modular exponentiation for encryption/decryption  

 

We studied each mathematical operation in detail to build foundational understanding before 

coding the crypto system. Our implementation performs sufficiently secure integer and word 

encryption/decryption while larger bit sizes would be used for encrypting files or network 

communication. 

 

RSA Implementation in C  

We coded separate sender and receiver modules implementing all RSA functionality component-

wise: 

I. Key Generation Phase 

   - Prime generation, n and φ(n) calculation 

   - Public (e) and private (d) exponent derivation  

 

II. Encryption Phase 

   - Get receiver's public key (e, n) 
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   - Perform modular exponentiation me (mod n)  

   - Output encrypted ciphertext 

 

III. Decryption Phase  

   - Use sender's private key (d, n) 

   - Perform modular exponentiation cd (mod n) 

   - Recover original plaintext message 

This step-by-step build out helped appreciate the flow before combining into an integrated working 

implementation.  

 

Verification Testing  

We verified the C implementation by 

- Cross-checking keys are generated properly 

- Encrypting test strings and matching ciphertexts 

- Roundtrip testing input strings through encryption then back to plaintext after decryption   

Diagnostic traces were inserted print key parameters and intermediate computations. Our RSA 

implementation demonstrated correct functionality fulfilling objectives. In conclusion, this project 

provided comprehensive exposure on cryptographic concepts fundamental to modern information 

security and hands-on experience implementing the landmark RSA public-key encryption 

innovation that pioneered secure communication in the digital revolution. The learned foundations, 

working demonstration, and verification testing bolsters understanding RSA and practical usage 

applying cryptography for data protection. 

 

6.2. Conclusion 

Implementing the RSA public-key cryptosystem serves as an invaluable opportunity to cement 

foundational understanding of information security concepts that have an outsized influence 

shaping the modern digital economy. Studying its breakthrough approach also provides deeper 

appreciation of the monumental real-world impact of cryptography in enabling secure 

communication channels. 
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Historical Context 

For over two millennia, encryption relied on same shared keys for message confidentiality. Various 

substitution, transposition and one-time pads prevailed but faced immense key distribution 

challenges practically limiting widespread adoption. That changed profoundly after Whitfield 

Diffie and Martin Hellman formally introduced the concept of public key cryptography in their 

1976 paper, “New Directions in Cryptography”.  

Their seminal vision to use separate keys for encryption and decryption solved the very key 

exchange predicament that had plagued secure messaging for centuries. This groundbreaking 

paradigm shift laid the conceptual foundations in asymmetric encryption space. It was soon 

followed by multiple implementations of which the RSA algorithm stood the test of time to shape 

modern cryptography more than any other. 

 

The RSA Cryptosystem 

The RSA scheme emerged in 1977 conceived by Ron Rivest, Adi Shamir and Len Adleman at 

MIT. It offered the first practical realization of public key cryptography using factorization 

difficulty of large primes for security. Their approach used modular exponentiation with linked 

private and openly shared public keys for straightforward enciphering combined with formidable 

deciphering without private key. 

 

By elegantly harnessing mathematical concepts, RSA delivered a comprehensive mechanism for 

establishing message confidentiality along with authenticity for non-repudiation. All this without 

needing pre-shared secrets between parties, effectively solving key exchange quandary plaguing 

cryptography from antiquity. Moreover, unlike past reliance on obscurity or key lengths for 

security, RSA fundamentally shifted trust assumptions to computational complexity problems. 

 

Key Generation 

We implemented the key generation phase by producing large prime numbers p and q before using 

them to derive encryption modulus n and associated exponents e and d. This mirrored RSA’s 

mathematical foundations and offered insights on randomness, primality testing and also 
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underscored risks from insufficient entropy and weak keys that could make schemes vulnerable 

against modern attacks. 

 

Encryption Process  

Our project code accepts an input plaintext string and applies modular exponentiation m^e mod n 

using the intended recipient’s public key parameters (n, e) to yield ciphertext output. We observed 

the impact of key length on security as well as how arithmetic operations though straightforward 

are rendered irreversible sans private key, formalizing the ingenious one-way trapdoor 

underpinning RSA's resilience.  

 

Decryption Mechanism 

We decrypt input ciphertexts using the recipient’s private exponent d and modulus n for decryption 

via cd mod n to retrieve original plaintext. Benchmarking computation times highlighted the 

exponential rise in complexity hindering brute force attacks against strong keys. Our contribution 

is miniscule compared to the billions of secure transactions enabled daily across industries thanks 

to RSA encryption. 

 

Advantages over History of Cryptography 

Studying and realizing RSA unlocked deeper appreciation of myriad ways its fundamental 

breakthroughs transformed secure communication compared to historical ciphers dependent on 

key secrecy: 

1. Eliminating key distribution complexities  

2. Establishing authentication via binding between identity and private key  

3. Enabling confidentiality plus integrity with digital signatures  

4. Cryptanalysis reliance shifting from breaking algorithms to factoring challenge 

5. Secure communication finally feasible over public untrusted mediums like Internet 

6. Key management simplified from needing secrecy to protecting private keys only 

These qualitative leaps expanded cryptography adoption exponentially across defense, 

government and commercial ecosystems - securing online payments, software updates, cloud data 

and much more in the digital revolution. 
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Conclusion  

In conclusion, few cryptographic contributions match the monumental real-world impact RSA has 

had over computing history. Implementing RSA was rewarding by cementing understanding of 

mathematical concepts like modulo arithmetic, randomness, primality, factorization difficulty and 

trapdoor one-way functions underlying its resilient design.  

Beyond just mechanics, appreciating RSA’s crucial role in enabling secure channels over public 

networks without prior secrets provided deeper insights on cipher evolution which saw secret keys 

used for millennia before RSA breakthroughs introduced public keys in what has shaped the 

modern cryptographic landscape. 

 

6.3. Future scope and recommendation 

I. Quantum-resistant RSA: Quantum computers, when they become practical, could 

potentially break RSA encryption. This is because RSA's security relies on the difficulty 

of factoring large numbers, which quantum computers can solve more efficiently than 

classical computers. Therefore, future research should focus on developing quantum-

resistant RSA or alternative cryptographic systems that can resist attacks from both 

classical and quantum computers. 

II. Improved Key Management: RSA key management is crucial for ensuring the security of 

RSA-encrypted data. Future research can explore new methods for key management, such 

as hierarchical key management, which involves creating a hierarchy of keys with different 

levels of access and permissions. This can help improve key management efficiency and 

security. Another potential area of research is blockchain-based key management, which 

can provide a decentralized and tamper-evident way of managing RSA keys. 

III. Efficient RSA Implementations: RSA can be computationally expensive, especially for 

large keys. Future research can focus on developing more efficient RSA implementations, 

such as those using elliptic curve cryptography or other advanced techniques. These 

implementations can reduce the computational overhead of RSA encryption, making it 

more feasible for resource-constrained devices or large-scale applications. 
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IV. RSA for IoT Security: As the Internet of Things (IoT) grows, RSA can play a vital role in 

securing these devices. Future research can explore RSA's potential in IoT security, such 

as lightweight RSA implementations for resource-constrained devices. Another potential 

area of research is RSA-based access control mechanisms for IoT devices, which can help 

prevent unauthorized access and ensure data privacy. 

V. RSA for Post-Quantum Security: While RSA itself is not quantum-resistant, it can be used 

in combination with other quantum-resistant algorithms to provide post-quantum security. 

Future research can explore RSA's role in post-quantum cryptography, such as hybrid 

encryption schemes that combine RSA with quantum-resistant algorithms like lattice-

based cryptography or code-based cryptography. 
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