



# UNIVERSITY OF JAMMU

(NAAC ACCREDITED 'A ++ GRADE' UNIVERSITY)  
Baba Sahib Ambedkar Road, Jammu-180006 (J&K)

Academic Section

Email: [academicsectionju14@gmail.com](mailto:academicsectionju14@gmail.com)

## NOTIFICATION (25/Dec./Adp./128)

It is hereby notified for the information of all concerned that the Vice-Chancellor, in anticipation of the approval of the Academic Council, is pleased to authorize the adoption of the syllabi and courses of studies for **Post Graduate Programme in Geology** under **NEP-2020** as per details given below:-

### Two Year Post Graduate Programme under NEP-2020

| Subject        | Semester     | For the examinations to be held in the year |
|----------------|--------------|---------------------------------------------|
| <b>Geology</b> | Semester-I   | December 2025, 2026 and 2027                |
|                | Semester-II  | May 2026, 2027 and 2028                     |
|                | Semester-III | December 2026, 2027 and 2028                |
|                | Semester-IV  | May 2027, 2028 and 2029                     |

### One Year Post Graduate Programme under NEP-2020

| Subject        | Semester    | For the examinations to be held in the year |
|----------------|-------------|---------------------------------------------|
| <b>Geology</b> | Semester-I  | December 2026, 2027 and 2028                |
|                | Semester-II | May 2027, 2028 and 2029                     |

The Syllabi of the courses are also available on the University website:  
[www.jammuuniversity.ac.in](http://www.jammuuniversity.ac.in)

Sd/-  
DEAN ACADEMIC AFFAIRS

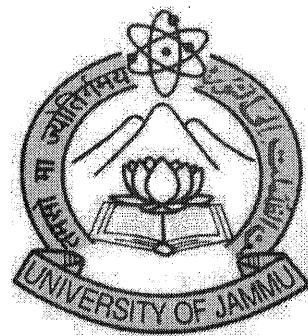
No. F. Acad/II/25/12821-935

Dated: 18/12/2025

Copy for information and necessary action to:

1. Dean, Faculty of Science
2. Convener, Board of Studies in Geology
3. Director, CITES&M, University of Jammu for directing the concerned to upload the notification on University Website
4. All members of the Board of Studies
5. Joint Registrar (Evaluation/P.G. Exam.)
6. Programmer, Computer Section, Examination Wing

*Abuoca* 18/12/25  
Joint Registrar (Academic)


*Abuoca* 18/12/25  
Joint Registrar (Academic)

*Abuoca* 18/12/25  
Joint Registrar (Academic)

Post Graduate Syllabi 2025

| S. No.             | Course No. | Course Title                                       | No. of Credits | Credits Level | Course Type | Marks    | Nature of course |           |          | Research Project/ Summer Internship/ Dissertation n |
|--------------------|------------|----------------------------------------------------|----------------|---------------|-------------|----------|------------------|-----------|----------|-----------------------------------------------------|
|                    |            |                                                    |                |               |             |          | Theory           | Practical | Regional |                                                     |
| <b>Semester-I</b>  |            |                                                    |                |               |             |          |                  |           |          |                                                     |
| 1                  | P1AGTC101  | Applied Micropalaontology and Oceanography         | 4              | 6.5           | 26          | Core     | 100              | -         | ✓        | ✓                                                   |
| 2                  | P1AGTC102  | Ore Geology                                        | 4              | 6.5           | 26          | Core     | 100              | -         | ✓        | ✓                                                   |
| 3                  | P1AGTC103  | Sedimentary Basin Analysis & Hydrocarbon Resources | 4              | 6.5           | 26          | Core     | 100              | -         | ✓        | ✓                                                   |
| 4                  | P1AGTC104  | Geotechnical Engineering                           | 4              | 6.5           | 26          | Core     | 100              | -         | ✓        | ✓                                                   |
| 5                  | P1AGTC105  | Application of Remote Sensing and GIS in Geology   | 4              | 6.5           | 26          | Core     | 100              | -         | ✓        | ✓                                                   |
| 6                  | P1AGPC106  | Practical (301, 302, 303, 304, 305)                | 4              | 6.5           | 26          | Core     | -                | 100       | ✓        | ✓                                                   |
| 7                  | P1AGPC107  | Geological Field Work (Outstation 10-15 days)      | 2              | 6.5           | 13          | Core     | 50               | ✓         | ✓        | ✓                                                   |
| <b>Semester-II</b> |            |                                                    |                |               |             |          |                  |           |          |                                                     |
| 8                  | P1AGTC201  | Quaternary Geology and Palaeoclimate               | 4              | 6.5           | 26          | Core     | 100              | -         | ✓        | ✓                                                   |
| 9                  | P1AGTC202  | Natural Hazards and Disaster Management            | 4              | 6.5           | 26          | Core     | 100              | -         | ✓        | ✓                                                   |
| 10                 | P1AGTE203  | Gemology                                           | 2              | 6.5           | 13          | Elective | 50               | -         | ✓        | ✓                                                   |
| 11                 | P1AGTE204  | Glaciology                                         | 2              | 6.5           | 13          | Elective | 50               | -         | ✓        | ✓                                                   |
| 12                 | P1AGTE205  | Earthquake Geology                                 | 2              | 6.5           | 13          | Elective | 50               | -         | ✓        | ✓                                                   |
| 13                 | P1AGRC206  | Dissertation                                       | 16             | 6.5           | 104         | Core     | 400              | ✓         | ✓        | ✓                                                   |

**SYLLABUS FOR ONE YEAR PG PROGRAM IN APPLIED GEOLOGY**  
**UNIVERSITY OF JAMMU**



**Syllabus and Courses of Study for**  
**M.Sc. Applied Geology**  
**PGFSG003**  
**as per NEP 2020**  
**(2025)**

**Syllabus for One Year PG Program in Geology**

**DEPARTMENT OF GEOLOGY, UNIVERSITY OF JAMMU**  
**Course Framework of One Year Postgraduate Programme in Applied Geology**  
**under National Education Policy (NEP) 2020**

| <b>Semester I (for sessions December 2026, 2027, 2028)</b> |                                                    |                |     |           |
|------------------------------------------------------------|----------------------------------------------------|----------------|-----|-----------|
| P1AGTC101                                                  | Applied Micropalaeontology and Oceanography        | 4              | 100 | 24        |
| P1AGTC102                                                  | Ore Geology                                        | 4              | 100 |           |
| P1AGTC103                                                  | Sedimentary Basin Analysis & Hydrocarbon Resources | 4              | 100 |           |
| P1AGTC104                                                  | Geotechnical Engineering                           | 4              | 100 |           |
| P1AGTC105                                                  | Application of Remote Sensing & GIS in Geology     | 2              | 50  |           |
| P1AGPC106                                                  | Practical (101, 102, 103, 104,105)                 | 4              | 100 |           |
| P1AGPC107                                                  | Geological Field Work (Outstation 10-15 days)      | 2              | 50  |           |
| <b>Semester II(for sessions May 2027, 2028, 2029)</b>      |                                                    |                |     |           |
| P1AGTC201                                                  | Quaternary Geology and Palaeoclimate               | 4              | 100 | 24        |
| P1AGTC202                                                  | Natural Hazards& Disaster Management               | 2              | 50  |           |
| P1AGTE203                                                  | Gemology                                           | Select any one | 2   |           |
| P1AGTE204                                                  | Glaciology                                         |                | 2   |           |
| P1AGTE205                                                  | Earthquake Geology                                 |                | 2   |           |
| P1AGRC206                                                  | Dissertation                                       | 16             | 400 |           |
| <b>Total credits to be earned by the student</b>           |                                                    |                |     | <b>48</b> |



## Syllabus for One Year PG Program in Geology

### Scheme of Examination

#### A) Scheme of Examination: (For 2 credits course having Four Units)

The student shall be continuously evaluated during the conduct of each course on the basis of his/her performance as:

| MCQ on LMS + Subjective Test | Syllabus to be covered the examination | Time allotted for the examination | Weightage (Marks) |
|------------------------------|----------------------------------------|-----------------------------------|-------------------|
| Test I (after 30 days)       | 25%                                    | 1 hour                            | 5+5               |
| Test II (after 60 days)      | 26 to 50%                              | 1 hour                            | 5+5               |
| Theory                       | Syllabus to be covered the examination | Time allotted for the examination | Weightage (Marks) |
| Major test (after 90 days)   | 100%                                   | 2 ½ hours                         | 30                |
|                              | Total                                  |                                   | 50                |

#### Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type questions. Students are required to answer two questions (5 Marks). No preparatory holidays shall be provided for the Test I and Test II. Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 7 out of 20 will be eligible to re-appear in the Test I and/ or Test II only once.

#### Major Test

The Major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 10 parts (minimum 02 from each unit) of 01 mark each. Section-B will have 04 questions of 10 marks each to be set from the last two units (02 from each unit). Students are required to attempt 01 question from each unit of section B. In major test there should not be gap of more than one day in between two tests.

#### B) Scheme of Examination: (for 04 credit course having Five Units)

The students shall be continuously evaluated during the conduct of each course on the basis of his/ her performance as:

| MCQ on LMS+ Subjective Test | Syllabus to be covered In the examination | Time allotted for the examination | % Weightage (Marks) |
|-----------------------------|-------------------------------------------|-----------------------------------|---------------------|
| Test I (after 30 days)      | 20%                                       | 1 hour                            | 10+10               |
| Test II(after 60 days)      | 21 to 40%                                 | 1 hour                            | 10+10               |
| Theory                      | Syllabus to be covered in examination     | Time allotted for the examination | %Weightage (Marks)  |
| Major test (after 90 days)  | 100%                                      | 3 hours                           | 60                  |
| Total                       |                                           |                                   | 100                 |

#### Test I and Test II

The subjective Test of Test I and Test II would consist of three short answer type questions (05 marks each). Students are required to answer two questions. No preparatory holidays shall be provided for the Test I and Test II. Those candidates who have appeared in Test I and Test II and failed to get the minimum required marks i.e. 14 out of 40 will be eligible to re-appear in the Test I and Test II only once.

#### Major Test

The Major test will comprise of two sections, Section-A and Section-B. Section-A will have one compulsory question comprising of 08 parts (minimum 01 from each unit) of 03 marks each. Section-B will have 06 questions of 12 marks each to be set from the last three units (02 from each unit). Students are required to attempt 01 question from each unit of section B. In major test there should not be a gap of more than two days in between two tests.

#### C) Practical 04 Credits

|                      | Time allotted for examination | %Weightage (Marks) |     |           |
|----------------------|-------------------------------|--------------------|-----|-----------|
| Midterm appraisal    | 4 hours                       | 25%                |     |           |
| External examination | 4 hours                       | 75%                | 50% | Exam      |
|                      |                               |                    | 25% | Viva-Voce |
| Total                |                               | 100                |     |           |

#### External Practical Research (thesis/ project/ dissertation) Examination

External Practical / Research examination shall be conducted by Board of Examiners consisting of Head of the Department, one / two Senior Professors of concerned department, concerned teacher and outside expert to be appointed by the Vice Chancellor out of the panel to be provided by the Head of the department who shall evaluate / assess final practical performance / dissertation of the students.

**Note:** For evaluation of thesis / project / dissertation concerned Board of Studies (BoS) has the flexibility to change the pattern of evaluation.

*Dev Mehta*

*Prakash*

*Shanti*

*Va*

**Programme and Course Outcome as per NEP2020**

Curricula developed and implemented have relevance to the local, national, regional and global developmental needs, which is reflected in the Programme outcomes (POs), Programme Specific Outcomes (PSOs) and Course Outcomes (COs) of the Programmes offered by the University:

The department of geology offers two Programme including M.Sc. Applied Geology & Ph.D. The curriculum developed at master degree level in M.Sc. Applied Geology have great relevance in the present day scenario as the courses offered by department imparting the knowledge about deciphering the earth's history, processes operating in their formation to arm the students with the knowledge of ancient events and environments, the knowledge of stratigraphic methods, concept of the distribution of Precambrian Shield belts and their evolution, knowledge about Paleozoic, Mesozoic and Cenozoic strata with faunal and floral elements and the Gondwana successions, fundamental knowledge about the structures in different settings ranging from regional, macroscopic to microscopic scale, define and discuss the fundamental concepts and different data sets, and the methods of structural geology and structural analysis, Students will learn to interpret the structures to unfurl the history of deformation in the rocks including advanced ideas of internal structure of earth. Introduction of the latest concept of geomagnetism and its application. The knowledge on tectonic evolution of Himalaya and Indian craton. concept of geomagnetism and its application, imparting the basic knowledge about the rock forming minerals, their formation, complexity, associations, identification and allied technical contexts, Imparting the basic knowledge about the rock forming minerals, their formation, complexity, associations, identification and allied technical contexts, basic idea of mineral interaction with light, and its utility for their understanding involving their 'optical properties, depositional mechanism of different sedimentary basins in relation to tectonics. Sequence stratigraphy and its application, fundamental concepts governing the landforms; understand the concept of various geomorphologic processes and landform evolution. Introduce the latest concept of chronology based on geomorphologic studies in tectonic zones. Remote Sensing Technology has emerged as an important tool for scientifically managing resources and environment, the technology enhanced our capability of resources exploration, mapping and monitoring on local and global scale, the courses have been designed with the objectives to acquaint the students with basic principles of remote sensing, GIS and GPS. To impart the knowledge about the concept of geochemistry and classification of elements. To provide working knowledge of various microfossil groups and their geological significance, the modern concepts, dynamics and resources of the marine realm, the course contrives to introduce the history of the fuel geology with a futuristic vision, also bearing in mind the importance of present energy challenges of which coal, oil and gas form an important and inseparable part. Stress will be on inculcating the classical ideas and imparting the latest knowledge – their origin, distribution, exploration, exploitation and production. Students should see this opportunity to explore energy options in India that are intricately based on the conditions created by geology. The courses impart the knowledge and understanding about ores, the various processes of the ore formations and modern concepts of the ore genesis. Students understand the formation, mode of occurrences and types of various petrological ore associations. The introductory course in engineering geology provides the understanding of how earth materials and geologic processes influence various civil engineering works. It also describes various important classifications, methods of investigation in various civil engineering projects with an emphasis on making construction decisions. On the other hand, the study of environment geology helps to impart knowledge about pollution and their remedial measures in order to mitigate the environmental problems. To acquaint the students with the concept of earth formation, minerals, rocks, processes of landforms, fossils, volcanoes, plate tectonics, groundwater, etc.



**SEMESTER - I**

## Syllabus for One Year PG Program in Geology

**Course No.: P1AGTC101**

**Credits: 04**

**Duration of Examination: 3 hours**

**Title: Applied Micropalaeontology and Oceanography**

**Maximum Marks: 100**

**(Minor I-20, Minor II 20, Major 60)**

**(Syllabus for the examination to be held in December 2026, 2027, 2028)**

### **Course Objectives:**

1. To provide working knowledge of various microfossil groups and their geological significance
2. To study the modern concepts, dynamics and resources of the marine realm

### **Course Outcomes:** Upon completion of this course the students will be able to

- Identify various microfossils
- Learn techniques for sampling, separating, and analyzing microfossils
- Apply microfossils in palaeoenvironmental, palaeoclimatic and palaeoceanographic studies, and hydrocarbon exploration
- Acquire a comprehensive understanding about oceans, their evolution, topography, sediments and dynamics
- Gain insights into the various resources of the marine realm and potential threats to it

### **UNIT-I**

- 1.1 Microfossils - introduction, record, important groups. Microfossil sampling, techniques of separation; microfossils picking and mounting
- 1.2 Morphology, classification and geological significance of Ostracoda
- 1.3 Morphology, classification and geological significance of Foraminifera
- 1.4 Morphology, classification, distribution and geological significance of Radiolaria and Diatoms

### **UNIT-II**

- 2.1 Morphology, classification, distribution and geological significance of Coccolithophores
- 2.2 Conodont: composition, elements, groups, apparatus and assemblages, biological affinities, history and geological significance. Pteropods and tentaculitids and their geological significance
- 2.3 Morphology, classification, distribution and geological significance of Acritarchs and Chitinozoans
- 2.4 Morphology, classification, distribution and geological significance of Dinoflagellates

### **UNIT-III**

- 3.1 Morphology, classification, and geological significance of Charophytes Charophytes: morphology, classification, ecology and significance
- 3.2 Palynomorphs: Spores and pollens morphology (shape, aperture, composition and structure, sculpture, size) and their application. Phytoliths and their significance
- 3.3 Microfossils and biostratigraphy – biozones, biozonation, stratigraphic correlation and problems in biostratigraphic interpretations.
- 3.4 Application of microfossils in palaeoenvironment, palaeoclimate and palaeoceanographic studies and hydrocarbon exploration

### **UNIT-IV**

- 4.1 Oceanography- origin and evolution of oceans; palaeoceanography – Palaeozoic, Mesozoic and Tertiary. Sea level fluctuations and their causes
- 4.2 Topographic features of the ocean floor. Hypsography of the continents and ocean floor. Classification of marine sediments, sediment budget, transport, accumulation. Coral reefs
- 4.3 Origin and evolution, structure and physiography, bathymetry and sediments of the Indian Ocean.
- 4.4 Wave dynamics: deep water, shallow water, wind waves; wave reflection, refraction and diffraction. Tides: equilibrium and dynamic theory, tidal currents in coastal areas, observation and prediction. Seiches and Tsunamis

### **UNIT-V**

- 5.1 Heat budget and Atmospheric Circulation. Storms, jet streams, El Nino and land effects on winds. Ocean circulation: forces driving currents. Surface currents and their effects on climate
- 5.2 Thermohaline circulation and global heat connection. Wind induced vertical circulation. Seawater chemistry and dissolved gases. Density structure of ocean and stratification
- 5.3 Phytoplankton dynamics in the marine food web and factors limiting productivity. Marine physical and biological resources

*Dev*  
*Munis*  
*A-2*

*Yogesh*  
7

*Parth*  
6

*Vas*

## Syllabus for One Year PG Program in Geology

5.4 Marine pollution – pollutants, habitat destruction and global changes (ozone layer depletion, global warming, acid rain)

### Recommended Books

1. Danial J. Jones 1956 Introduction to Microfossils. Harper and Brothers, Harper Geoscience Series
2. M.D. Brasier 1980 Microfossils. George Allen & Unwin
3. Gerard Bignot 1985 Elements of Micro Palaeontology. Graham Trotman Limited
4. David G. Jenkins (Ed) 1993 Applied Micropalaeontology. Kluwer Academic Publishers
5. P.K. Kathal 1998 Microfossils and their applications. CBS Publishers
6. H.A. Armstrong and M.D. Brasier 2005 Microfossils. Blackwell Publishing
7. P.K. Kathal. 2012. Applied Geological Micropalaeontology. Scientific Publishers
8. P.K. Saraswati & M.S. Srinivasan 2016 Micropaleontology. Springer
9. S. Jain. Microfossils. 2020. Springer
10. Gross, M.G.1972 Oceanography - A view of the Earth. Prentice-Hall.
11. S. Davis, R.A. Jr. 1972 Principles of Oceanography. Addison -Wesley Publishing Company.
12. Bhatt, J.J. 1978 Oceanography - Exploring "the planet Ocean. D. van Nostrand Company.
13. Haq, B.U. & Milliman, J.D. 1984 Marine Geology and oceanography of Arabian Sea and coastal Pakistan. Elite Publishers Limited.
14. Roonwal, G.S. 1986 The Indian Ocean: Exploitable mineral & petroleum Resources. Narosa Publishing house
15. Duxbury, A.B. & Duxbury, A.C. 1993 Fundamentals of Oceanography. Wm. C. Brown Publishers.
16. Qasim, S.Z. & Roonwal, G.S. (eds) 1996 India's Exclusive Economic Zone. Omega Scientific Publishers.
17. Garrison, T. 1995 Oceanography- An invitation to Marine Science. Wadsworth Publishing Company.
18. A.P. Trujillo & H.V. Thurman 2012 Essentials of Oceanography. PHI Learning Private Limited
19. Garrison, T. & Ellis, R. 2016 Oceanography: An invitation to Marine Science, National Geographic Learning.
20. Savindra Singh. 2021. Oceanography. Indigo Books.

**Course No.: P1AGTC102**

**Credits: 04**

**Duration of Examination: 3 hrs**

**Title: Ore Geology**

**Maximum Marks: 100**

**(Minor I-20, Minor II 20, Major 60)**

**(Syllabus for the examination to be held in Dec. 2026, Dec. 2027 & Dec. 2028)**

**Course Objectives:** The course deals with the natural mineral resources and their association with different host rocks during their formation. The main objective of the course is to impart knowledge and understanding about the fundamental and advanced concepts regarding the origin of various ores and industrial minerals. To provide thorough knowledge on the mineral assemblages, textural features, paragenetic order and metallogeny and to understand the formation, mode of occurrences and types of various petrological ore associations.

**Course Outcomes:** Upon completion of the course, students will be able to:

- Understand the different ore systematic at divergence geological setting and terrains with implications for exploration.
- Identification of minerals based on their optical properties and textural behaviour and their application in mineral beneficiation industries.
- To know the source and depositional environment based on isotopic and fluid inclusion studies.

- To apply the knowledge in exploration of the mineral resources
- To understand the use of minerals in Industry

**UNIT-I: Ore Geology Techniques**

- 1.1 Introduction to ore mineralogy and ore microscopy
- 1.2 Qualitative and Quantitative methods in the identification of Ore minerals.
- 1.3 Introduction to ore textures, microstructures and applications: Ore textures and paragenesis. Industrial application of ore microscopy
- 1.4 Fluid Inclusion studies.

**UNIT-II: Othomagmatic Ore Deposits associated Mafic and Ultramafic rocks**

- 2.1 Chromite deposit associated with mafic and ultramafic rocks: their types and genetic models.
- 2.2 Genesis of Cu-Ni ± Co sulphides deposits associated with magmatic processes.
- 2.3 Diamond deposits associated with Kimberlites their characteristics and genetic models.
- 2.4 REE-Nb-Industrial minerals ( $\pm$  Cu) mineralization associated with Carbonatites- their characteristics and genesis.

**UNIT-III: Late Magmatic Deposits associated with Felsic rocks**

- 3.1 Granite-related mineralization systems: diversity of mineralization styles and related mineral deposits.
- 3.2 Porphyry copper deposits- types, characteristics, associated alterations and origin.
- 3.3 Intrusion-related gold systems
- 3.4 Pegmatites and associated mineralization.

**UNIT IV: Hydrothermal System**

- 4.1 Components of hydrothermal system, Geodynamics and Temporal Evolution of Hydrothermal Mineral Systems
- 4.2 Hydrothermal Processes and Wall Rock Alteration.
- 4.3 Intrusion related Hydrothermal system, mineralisation associated with greisens and skarns
- 4.4 Submarine hydrothermal system: Volcanic hosted massive sulfide deposits – types, characteristics and mode of occurrences

**Unit V Ore Deposits associated with Sedimentary and weathering processes**

- 5.1 Placers and paleoplacers – process and mechanism of development, tectonic and temporal aspects of placer deposition and origin of ores
- 5.2 Sedimentary and synsedimentary iron ore deposits – types, general characteristics and origin..
- 5.3 Stratabound carbonate hosted base metal deposits – types, general characteristics and genetic models.
- 5.4 Ores related to weathering processes – bauxite, laterite and Ni/Au-laterite deposits, general characteristics and process of formation. Supergene enrichment.

**Books Recommended**

1. Craig, J.R and Vaughan, D.J., 1981.
2. Kula C Misra. 2001:
3. Robb, L. (2005)
4. H.L.Barnes (Ed). 1997.
5. A.M. Evans. 1997:
6. Mukerjee A
7. Robb, L J
8. Pirajno Franko
9. Sharma, R&Srivastava, PK and
10. Srivastava, P K

Ore Microscopy and Ore Petrography. John Wiley&sons  
Understanding Mineral Deposits. Kluwer Publ.  
Introduction to Ore-Forming Processes by, Blackwell Publishing Ltd.  
Geochemistry of Hydrothermal deposits. III Edn. John Wiley & Sons.  
Ore Geology and Industrial minerals- An introduction (III edn.) Geoscience, Texas  
Ore Genesis: A Holistic Approach  
Introduction to Ore Forming Processes  
Hydrothermal Mineral Deposits  
Hydrothermal Fluids of Magmatic origin in S Kumar  
R N Singh Modelling of Magmatic and allied processes, Springer  
On e-pathshala on website of UGC, New Delhi

*Deepti  
Munir  
T.A. 1*

*Yash  
Bendre  
Va*

**Course No.: P1AGTC103**

**Credits: 04**

**Duration of Examination: 3 hours**

**Title: Sedimentary Basin Analysis & Hydrocarbon Resources**

**Maximum Marks: 100**

**(Minor I-20, Minor II 20, Major 60)**

**(Syllabus for the examination to be held in Dec. 2026, Dec. 2027 & Dec. 2028)**

**Course Objectives:** This course is about deciphering the earth's history from the pages of the earth's past written in the sedimentary rocks. The course shall help students to understand the evolution and depositional mechanism of different sedimentary basins in relation to endogenic and exogenic controls.

**Course Outcome:** Sedimentary Basin Analysis course shall reflect the advanced understanding and analytical capabilities expected at the postgraduate level with critical thinking, technical proficiency and research skills. The students shall be able to analyze the tectonic settings and geodynamic evolution of some important sedimentary basins in India. This course shall help the students to interpret sedimentary facies, depositional environments, and sequence stratigraphy for basin classification and resource evaluation. In addition, the students shall learn to integrate geological, geophysical, and geochemical data for resource assessment in sedimentary basins.

#### **UNIT-I Basins and their evolution**

- 1.1 Mechanisms of basin formation; Continental and marine sedimentary basins, Allogenic controls on basin evolution
- 1.2 Tectonic classification of sedimentary basins – intra-plate basins (pre-rift); divergent-margin basins (syn-rift); intra-plate basins (post-rift); convergent-margin basins; collision and post-collision basins; strike-slip basins.
- 1.3 Tectonic evolution of Siwalik basin as an example of collision tectonics
- 1.4 Tectonic evolution of Kutchchh basin as an example of extensional tectonics

#### **UNIT-II Basin Analysis**

- 2.1 Methods of basin analysis (Tectonic, stratigraphic and sedimentological)
- 2.2 Tools of basin analysis– Facies analysis, sediment dispersal and palaeo-flow analysis
- 2.3 Geophysical tools (seismic, gravity), Geochemical tools (organic and mineral geochemistry)
- 2.4 Application of carbon and oxygen isotopes in sedimentology

#### **UNIT-III Depositional Environments**

- 3.1 Classification of sedimentary environments
- 3.2 Continental sedimentary environments (Fluvial, Lacustrine)
- 3.3 Shallow marine sedimentary environments (Estuary, Delta, Tidal flat, Lagoon)
- 3.4 Deep marine sedimentary environment (Submarine fan, Abyssal plain)

#### **UNIT-IV Sequence Stratigraphy**

- 4.1 Concept of sequence stratigraphy, Sea level changes, aggradation, progradation, retrogradation, transgression and regression; Eustatic sea level changes
- 4.2 System tracts - lowstand system tract, transgressive system tract, transgressive surface and highstand system tract
- 4.3 Sequences, parasequences; Flooding surface, maximum flooding surface, marine flooding surface; overlap, offlap, toplap and onlap
- 4.4 Sequence stratigraphic approach in basin analysis and case history of important petroliferous basins of India.

#### **UNIT-V Hydrocarbon Basins**

- 5.1 Origin of Petroleum (Inorganic and Organic theories). Generation, maturation process, migration and accumulation of oil and gas, oil shales
- 5.2 Concept of petroleum system: Reservoir rocks (clastic and non-clastic reservoir rocks, development and types of porosity in these rocks. Controls of permeability).
- 5.3 Petroleum traps: Cap rocks (seals), Occurrence, surface indications and direct detection of hydrocarbons.
- 5.4 Petroliferous basins of India (Assam, Bombay High, Ankleshwar)

**Books Recommended**

|                                         |                                              |
|-----------------------------------------|----------------------------------------------|
| 1. Miall, Andrew D.                     | Principles of Sedimentary Basin Analysis     |
| 2. Miall, A D.                          | Fluvial Depositional System                  |
| 3. Lindholm, R. C.                      | A Practical Approach to Sedimentology        |
| 4. Reineck, H. E. & Singh, I. B.        | Depositional Sedimentary Environments        |
| 5. Reading, H.G.                        | Sedimentary Environments                     |
| 6. Selley, R.C.                         | Applied Sedimentology                        |
| 7. Bjorlykke, K.                        | Sedimentology and Petroleum Geology          |
| 8. Leeder, M.R. Sedimentology:          | Process and Product                          |
| 9. Prothero and Schwab                  | Sedimentary Geology                          |
| 10. Swift, Oertel, Tillman and Thorne   | Shelf Sand and Sandstone Bodies:             |
| 11. Zutshi and Panwar                   | Geology of Petroleum Basins of India         |
| 12. Bhandari et al.                     | Petroleum Basins of India                    |
| 13. Miall, A D                          | The Geology of Sequence Stratigraphy         |
| 14. Catuneanu O                         | Principles of Sequence Stratigraphy          |
| 15. Gary Nichols                        | Sedimentology and Stratigraphy               |
| 16. Stephen Killops and Vanessa Killops | Introduction to Organic Geochemistry         |
| 17. Sam Boggs, Jr.                      | Principles of Sedimentology and Stratigraphy |
| 18. Barker, C.                          | Thermal Modeling of Petroleum Generation     |
| 19. Holson, G.D. and Tiritso, E.N.      | Introduction of Petroleum Geology            |
| 20. Hunt, J.M.                          | Petroleum geochemistry and geology           |
| 21. Jahn, F., Cook, M. and Graham, M.   | Hydrocarbon Exploration and Production       |
| 22. North, F.K.                         | Petroleum Geology,                           |
| 23. Selley, R.C.                        | Elements of petroleum geology,               |
| 24. Tissot, B.P. and Welte, D.H.        | Petroleum formation and occurrence           |

**Course Code: P1AGTC104**

**Course Credit: 4**

**Duration of Examination: 3 hours**

**Course Title: Geotechnical Engineering**

**Marks: 100**

**(Minor I-20, Minor II 20, Major 60)**

**(Syllabus for the examination to be held in Dec. 2026, Dec. 2027 & Dec. 2028)**

**Course Objectives:** This advance course in geotechnical engineering aims to provide students with a comprehensive understanding of soil and rock mechanics fundamentals, including their formation, classification, and engineering properties. The objective is to equip students with the knowledge and skills necessary to analyze the stress-strain behavior and shear strength of soils, understand rock mass characterization and classification systems. Furthermore, the course seeks to introduce the principles of rock mechanics, covering intact rock properties, the influence of discontinuities in rock masses, and various rock mass classification systems like RQD, RMR, Q-system, and SMR. A significant objective is also to equip students with knowledge for analyzing and addressing geotechnical challenges in engineering projects.

**Course Outcomes:** Upon completion of this course

- Students will be able to classify and characterize various soil types based on their physical and index properties
- They will be able to analyze the stress-strain behavior of soils
- Students will be capable in understanding and applying various shear strength theories and laboratory/field tests for soils.
- Understand the significance of discontinuities, and apply different rock mass classification systems to assess rock quality for engineering applications in various geotechnical engineering projects such as dams, highways, tunnels, and bridges.

**Unit 1: Fundamentals of Soil Mechanics**

- 1.1- Introduction and scope of geotechnical engineering; Types of geotechnical investigations associated with dams, highways, tunnels and bridges.
- 1.2- Concept of soil mechanics; Phase relationships of soils: water content, specific gravity, absorption value, degree of saturation, void ratio, porosity, unit weights.
- 1.3- Index Properties of Soil - Atterberg's limits (Liquid Limit, Plastic Limit, and Shrinkage Limit) and their significance; Particle size distribution (sieve analysis, hydrometer analysis); Soil compaction: principles and methods (Proctor test).

1.4- Concept of Permeability & Seepage; coefficient of permeability; factors affecting permeability; laboratory and field permeability tests, significance of the permeability & seepage test.

**Unit 2: Stress-Strain Behavior of Soils and Shear Strength**

- 2.1- Concepts of stress, strain, and elastic moduli; total stress, pore water pressure, and effective stress; importance of effective stress in geotechnical analysis.
- 2.2- Concept of Mohr-Coulomb failure criterion; parameters of shear strength: cohesion (c) and angle of internal friction (phi), factors affecting shear strength (draining conditions, stress history).
- 2.3- Laboratory Shear Strength Tests: Direct Shear Test, Triaxial Compression Test, Vane Shear Test; their advantages, and limitations.
- 2.4- Field Shear Strength Tests: Standard Penetration Test (SPT), Cone Penetration Test (CPT); their correlation with soil properties and its applications.

**Unit 3: Rock Mechanics Fundamentals & Rock Mass Characterization**

- 3.1- Introduction to Rock Mechanics: Rock as an engineering material; Selection criteria of rock masses for various purposes; Differences between intact rock and rock mass properties.
- 3.2- Intact Rock Properties: Physical properties: density, porosity, water absorption, Mechanical properties: Uniaxial Compressive Strength (UCS), Tensile Strength, Modulus of Elasticity, Poisson's Ratio.
- 3.3- Discontinuities in Rock Masses: Joints: Formation, types, and geological significance; Geometric parameters of discontinuities/joints: orientation (strike, dip, dip direction), spacing, persistence, roughness, infilling, weathering condition.
- 3.4- Concept and scope of kinematic analysis of rock slopes for knowing various modes of failures; Conditions of planar failure, wedge failure and toppling failures.

**Unit 4: Rock Mass Classification Systems & Applications**

- 4.1- Introduction to Rock Mass Classification: Rock Quality Designation (RQD): Limitations and applications of RQD in rock mass quality assessment.
- 4.2- Concept of Rock Mass Rating (RMR) System: Parameters of RMR (UCS, RQD, spacing of joints, condition of joints, groundwater, and orientation of joints); Calculation of RMR<sub>basic</sub>; Applications of RMR in tunneling and slope stability.
- 4.3- Introduction to tunneling index (Q-System); parameters of Q-system: rock quality assessment, joint roughness number (Jr), joint set number (Jn), joint alteration number (Ja), joint water reduction (Jw), stress reduction factor (SRF); Calculation and interpretation of Q-value; Applications of Q-system, tunnel supports.
- 4.4- Introduction to Slope Mass Rating (SMR) System; Extension of RMR for slope stability analysis; Parameters of SMR and its modifications; Application of SMR in evaluating rock slope stability.

**Unit 5: Landslides and Slope Stability**

- 5.1- Landslides: nomenclature; significance and global impact of landslides, classifications (Varnes, 1978; Van Schalkwyk and Thomas, 1991; Cruden and Varnes, 1996)
- 5.2- Factors triggering landslides: rôle of geological, hydrological and anthropogenic factors; failure mechanism; Concept of the factor of safety in slope stability
- 5.3- Concept of landslide susceptibility mapping: Heuristic (Qualitative) Methods, Statistical Methods; Machine Learning techniques, Deterministic (Physical-Based) Models and Hybrid Methods.
- 5.4- Landslide mitigation measures: slope modification, drainage improvement, retaining structures, rock fall protection, slope reinforcement practices; Role of public awareness and education in reducing landslides; early warning systems

**Recommended Books:**

|                                                  |                                             |
|--------------------------------------------------|---------------------------------------------|
| 1. Principles of Geotechnical Engineering by     | Braja M. Das (2017)                         |
| 2. Soil Mechanics in Engineering Practice by     | Terzaghi, Peck & Mesri (1996)               |
| 3. Soil Mechanics and Foundations by             | B.C. Punmia (2017)                          |
| 4. Soil Mechanics by                             | T. William Lambe & Robert V. Whitman (1969) |
| 5. Fundamentals of Soil Behavior by              | James K. Mitchell (2005)                    |
| 6. Soil Testing for Engineers by                 | T.W. Lambe (1951)                           |
| 7. Field Testing and Instrumentation of Soils by | P. Mohan Das (2009)                         |
| 8. Introduction to Rock Mechanics by             | Richard E. Goodman (1989)                   |
| 9. Rock Mechanics for Underground Mining by      | B.H.G. Brady & E.T. Brown (2004)            |
| 10. Engineering Geology by                       | F.G. Bell (2007)                            |
| 11. Practical Rock Engineering by                | Evert Hoek (2007)                           |

## Syllabus for One Year PG Program in Geology

- 12. Engineering Rock Mass Classifications by Z.T. Bieniawski (1989)
- 13. Rock Slope Engineering by Wyllie & Mah (2004)
- 14. Geotechnical Engineering Investigation Manual by Roy E. Hunt (2005)
- 15. Landslide Hazard and Risk edited by Glade, Anderson, and Crozier (2005)
- 16. Stabilization of Earth Slopes and Landslides by Donald H. Gray (2012)
- 17. Principles of Engineering Geology by Prabin Singh
- 18. A textbook of General and Engineering Geology by D. S. Arora.

**Course No.: P1AGTC105**

**Geology**

**Credits: 02**

**Duration of Examination: 2½ hours**

**Title: Application of Remote Sensing & GIS in**

**Maximum Marks: 50**

**(Minor I-10, Minor-II 10, Major -30)**

**(Syllabus for the examination to be held in Dec 2026, Dec 2027 & Dec 2028)**

**Course Objectives:** Role of Remote Sensing & GIS technology in geology, geomorphology, lithology interpretation and resultant landforms. Geospatial applications in watershed management, Mineral & oil Exploration and disaster management

**Course Outcomes:** On successful completion of the course the students will be able-

- To understand the concepts of remote sensing applications in the geology
- To examine the spectral characteristics of rocks and minerals.
- To understand drainage patterns, Lithology and structural interpretation of folds, faults, fluvial, glacial & karst landforms.
- To analysis the DEM for Terrain Evaluation, structural and denudational landforms.
- Remote sensing & GIS application in Watershed management, mineral exploration, oil exploration, geological hazards mapping and disaster management.

### **Unit-1**

- 1.1 Remote Sensing in geology – an overview
- 1.2 Basic concept of geomorphology, earth surface process and resultant landforms
- 1.3 Spectral characteristics of rocks and minerals
- 1.4 Interpretation of drainage patterns – types and its significance in geologic interpretation

### **Unit -2**

- 2.1 Lithological interpretation: Igneous rocks, Sedimentary rocks and Metamorphic Rocks; lithological mapping
- 2.2 Structural interpretation: folds, faults unconformities and lineaments; structural mapping
- 2.3 Interpretation of fluvial landforms
- 2.4 Interpretation of glacial and Karst landforms

### **Unit – 3**

- 3.1 Digital Elevation Model, terrain evaluation and geomorphological mapping
- 3.2 Interpretation of structural and denudational landforms – cuesta, hogback, butte, mesa, etc
- 3.3 Interpretation of landforms related to igneous, sedimentary and metamorphic rocks
- 3.4 Morphometric analysis and its applications in morphotectonics

### **Unit – 4**

- 4.1 Remote Sensing in water exploration; Role of Remote Sensing in watershed conservation, planning and management
- 4.2 Remote sensing in mineral exploration - an overview and application of remote sensing in mineral exploration - Indian examples
- 4.3 Remote sensing in oil exploration - features helpful in detection of target areas for oil exploration
- 4.4 Geological hazards mapping and disaster management

### **Books Recommended**

Drury, S.A., 1987

Gupta, R.P., 1990

Image Interpretation in Geology. Allen and Unwin  
Remote Sensing Geology. Springer Verlag.

## **Syllabus for One Year PG Program in Geology**

|                                          |                                                                                  |
|------------------------------------------|----------------------------------------------------------------------------------|
| Jensen, J.R. 2000                        | Remote Sensing of the Environment: An Earth resource Perspective. Prentice Hall  |
| Lillesand, T.M., and Kieffer, R.M., 1987 | Remote Sensing and Image Interpretation, John Wiley.                             |
| Paine, D.P., 1981:                       | Aerial Photography and Image Interpretation for Resource Management. John Wiley. |
| Pandey, S.N., 1987:                      | Principles and Applications of Photogeology. Wiley Eastern.                      |
| Miller, V.C., 1961:                      | Photogeology. McGraw Hill.                                                       |
| Ray, R.G., 1969:                         | Aerial Photographs in geologic Interpretations. USGS Prof, Paper 373.            |

**Course No.: P1AGTC106**

**Credits: 04**

**Maximum Marks: 100**

**Title: Practicals related to 101, 102, 103, 104, 105**

**Duration of Examination: 4 hours**

**P2AGPC101** Palaeocurrent analysis: Tilt correction, calculation of azimuthal direction; Preparation and interpretation of lithologs and isopach maps; Analysis of seismic profiles; Delineation of sequence boundaries, systems tracts and parasequences in sedimentary sequences

**P2AGPC102** Processing of samples, picking and mounting of microfauna, study of diagnostic morphological characters of selected microfossils, construction of biostratigraphic charts, ocean floor profiles, bathymetry of oceanic sub-environments, circulation patterns etc.

**P2AGPC103** Petrography of clastic and non-clastic rocks; Palaeo-current analysis: Tilt correction, calculation of azimuthal direction; Preparation and interpretation of lithologs and isopach maps; Analysis of seismic profiles; Delineation of sequence boundaries, systems tracts and parasequences in sedimentary sequences

**P2AGPC104** Kinematic analysis of joint data, determination and interpretation of various rock mass classification systems, including RQD (Rock Quality Designation), RMR<sub>b</sub> (Rock Mass Rating Basic), Slope Mass Rating (SMR) and Tunneling Index (Q-system); determination of Atterberg limits and Uniaxial Compressive Strength (UCS) test of rocks.

**P2AGPC105** Visual interpretation of satellite images to study the Geomorphology, lithology, geology and structure;

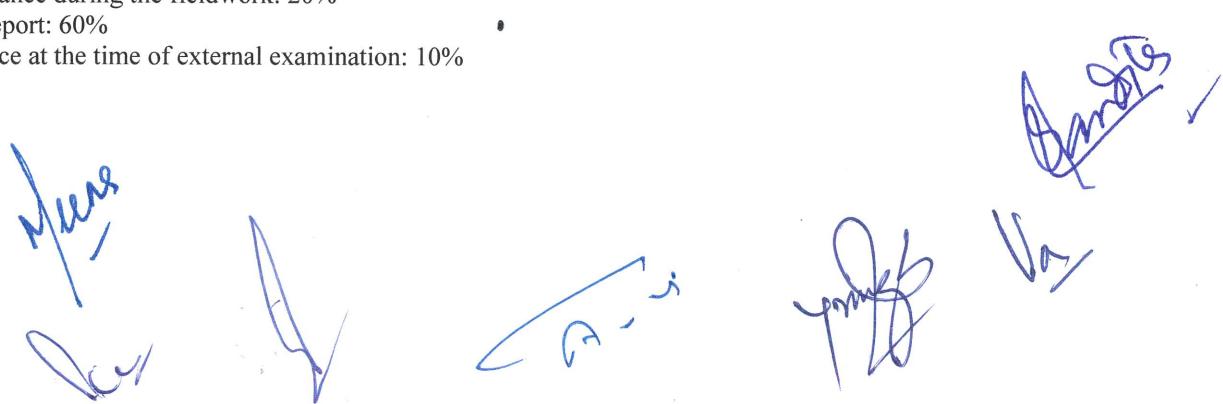
Digital image processing for the study of geomorphology, structure, and lineaments; Geomorphic mapping; Lineament mapping; Structural mapping; Preparation of Hydro-geomorphology map.

**Course No P1AGPC107**

**Credits: 2**

**Geological Field Work(Outstation 10-15 days)**

**Max. Marks: 50**


This course shall comprise of 10-15 day's field work in areas of geological interest, preferably out of state. The students shall have experiential learning on map reading, rock and mineral identification, geological mapping in structurally complexed terrain/ mineralised area / Industrial training/ visit to mining areas etc. Practical skills such as field mapping, understanding the relationships between different rock types and their formation processes, sample collection, data recording, data interpretations and report writing are also emphasized. At the end the students shall submit a comprehensive field report. The distribution of marks shall be as follows:

Attendance: 10%

Performance during the fieldwork: 20%

Field Report: 60%

Viva-voce at the time of external examination: 10%



Handwritten signatures of students and faculty members are visible in the bottom right corner of the page. The signatures are in blue ink and appear to be in cursive script. There are approximately five signatures, though some are partially obscured or overlapping.

*Syllabus for One Year PG Program in Geology*

**SEMESTER - II**

**Course No.: P1AGTC201**  
**Credits: 04**  
**Duration of Examination: 3 hours**

**Title: Quaternary Geology and Palaeoclimate**  
**Maximum Marks: 100**  
**(Minor I-20, Minor II 20, Major 60)**

**(Syllabus for the examination to be held in May 2027, May 2028 & May 2029)**

**Course Objectives:** This course is designed for postgraduate students in Geology, aiming to provide both theoretical and practical understanding of Earth's recent geological past and its climate history. The students shall study the fundamental aspects of Geology that help in understanding and reconstruction of palaeoclimate and active tectonics during the Quaternary time period.

**Course Outcomes:** This course shall help the students to

- Understand the processes that have resulted into the climate change and tectonic deformation during the Quaternary time period.
- Understand the role of different environmental and geological proxies to reconstruct past climate changes
- Equip the students with skills in analytical methods used in Quaternary geology research

#### **Unit I: Fundamentals of Quaternary Period and Climate Change**

- 1.1. Pleistocene and Holocene: Definition, chronology, subdivisions and duration.
- 1.2. Earth's climate system: The causes and timescale of climatic variations, solar forcing and earth's orbital parameters.
- 1.3. Tectonic scale climate change: Plate tectonics and long-term climate change, CO<sub>2</sub> and long-term climate change,
- 1.4. Major Global Quaternary Events: Ice ages, Younger Dryas, Holocene Climate Optimum

#### **Unit II: Palaeoclimate Proxies and Reconstruction**

- 2.1. Palaeoclimate proxies: Ice cores, tree rings, speleothems, marine and lake sediments.
- 2.2. Stable isotopes ( $\delta^{18}\text{O}$ ,  $\delta^{13}\text{C}$ ), biomarkers, and geochemical indicators of palaeoclimate.
- 2.3. Palaeotemperature and palaeo-precipitation reconstruction.
- 2.4. Palaeoenvironmental archives in India (Himalaya, Peninsular lakes, Ganga plains)

#### **Unit-III: Tectonic Geomorphology**

- 3.1. Tectonic Geomorphology: Geomorphic markers, Planer and Linear markers.
- 3.2. Geomorphic Indices of Active Tectonics: Hypsometric Curve and Hypsometric Integral Drainage Basin Asymmetry, Stream Length-Gradient Index (SL) and Mountain-Front Sinuosity.
- 3.3. Drainage Pattern and Structural control over the rivers in different tectonic environment.
- 3.4. Tectonic Geomorphology and faulting: Landforms in compressional, extensional, and strike-slip regime.

#### **Unit-IV: Active Tectonics and Geodesy**

- 4.1. Active Faults, geomorphic and geological signatures of active faults.
- 4.2. Displacement variations along an active fault, fault growth, and fault segmentation.
- 4.2. Surface rupturing and buried faults in different tectonic settings.
- 4.3. Geodesy: Fundamentals of geodesy, crustal deformation across fault zones, interseismic strain accumulation.

#### **Unit-V: Palaeoseismology**

- 5.1. Introduction to Palaeoseismology, relationship with other neotectonic studies.
- 5.2. Classification of Paleoseismic Evidence: Primary and secondary evidence of prehistoric earthquakes.
- 5.3. Field techniques in paleoseismology: Mapping paleoseismic landforms, locating sub-surface deformation, GPR survey, trenching and logging.
- 5.4. Prehistoric earthquake dating and recurrence, dating techniques, precision and their relation to recurrence.

**Recommended Books**

1. Bowen, D.Q. (1999).
2. Lowe, J.J. & Walker, M.J.C. (2014).
3. Ruddiman, W.F. (2008).
4. Roberts, N. (2013).
5. Bradley, R.S. (2014).
6. Burbank, Douglas West Anderson, Robert Stewart - Tectonic Geomorphology (2012, Wiley-Blackwell J. Wiley & Sons) - libgen.lc
7. Goudie, A. (2004).
8. Edward A. Keller - Active Tectonics Earthquakes, Uplift, and Landscape- Prentice Hall College Div (1995).

**Course No.: P1AGTC202**

**Credits: 02**

**Duration of Examination: 2½ hours**

**Title: Natural Hazards and Disaster Management**

**Maximum Marks: 50**

**(Minor I-10, Minor-II 10, Major -30)**

**(Syllabus for the examination to be held in May 2027, May 2028 & May 2029)**

**Course Objectives:** This course aims to provide students with the essential knowledge and skills needed for hazards and disaster management. The primary objective is to enable students to understand the types, causes, and consequences of various hazards, both natural and human-induced. Students will learn to assess vulnerability and risk, comprehend different disaster management strategies, and analyze the crucial roles of institutions and stakeholders in this field. The course seeks to foster critical thinking, preparing students for effective disaster preparedness, response, recovery, and long-term resilience building.

**Course Outcomes:** Upon completing this course, students will be able to

- Effectively analyze vulnerability and its implications on disaster risk.
- Capable of applying the disaster management cycle to real-world scenarios and will possess a clear understanding of the institutional frameworks and emerging trends in disaster management
- Able to recognize the vital roles of various stakeholders in disaster risk governance, contributing to the country's capacity-building efforts toward a more disaster-resilient society

**Unit 1: Fundamentals of Hazards and Risk**

- 1.1- Introduction to Hazards: Definition and classification of hazards, distinguish between natural and anthropogenic hazards, causes and consequences.
- 1.2- Introduction to Disaster Risk: Core concept of disaster risk, key components of disaster risk, interrelationship between hazards, vulnerability, and capacity
- 1.3- Understanding Vulnerability: Various forms of vulnerability- physical, social, economic, and environmental vulnerability; role and contribution of vulnerability to amplify disaster risk.
- 1.4- Overview of major geohazards: Comprehensive look at the mechanisms, impacts, initial mitigation strategies.

**Unit 2: Key Hazards and Disaster Management Cycle**

- 2.1- Cyclones, Wildfires and Droughts: characteristics, causes, preventive measures and socio-economic consequences of specific hazards.
- 2.2- Core Concepts of Disaster Management (DM): Definition and scope of disaster management, its key components, distinction between Crisis Management and Risk Management.
- 2.3- Disaster Management Cycle: Pre-disaster stages (prevention, mitigation, preparedness); Syn-disaster stage- emergency stage (response); post-disaster stages (rehabilitation, reconstruction, recovery).
- 2.4- Impact of Disaster on Development: Analysis of how disasters impact development; paradigm shift in disaster management.

**Unit 3: Policy Frameworks for Disaster Risk Reduction**

- 3.1- Approaches to Disaster Risk Reduction (DRR): Comprehensive study of prevention, mitigation, and preparedness strategies as fundamental components of disaster risk reduction.

- 3.2- India's National DM Policy: Overview of India's national policy on disaster management;
- 3.3- Evolution and key features of India's DM policy; legal framework; Disaster Management Act, 2005.
- 3.4- National Disaster Management Framework (India): Structure and functions of key national, state, and district-level authorities in India (NDMA, NEC, SDMA, DDMA).

**Unit 4: Stakeholders and Future of Disaster Management**

- 4.1- Disaster Profile of India: Analysis of major disasters in India, including their regional and seasonal profiles, and lessons learned from past events.
- 4.2- Stakeholder Roles and Responsibilities: Roles of specialized institutions like NIDM and NDRF and SDRF, armed/paramilitary forces.
- 4.3- Roles of urban and local bodies, social networking, print and electronic media, NGOs, and local communities.
- 4.4- Global Challenges and Opportunities: Overview of global challenges in disaster management and emerging opportunities for innovation and collaboration.

**Recommended Books:**

1. Confronting Catastrophe: New Perspectives on Natural Disasters- Alexander, D. (2000).
2. Natural Hazards and Disasters- Donald Hyndman & David Hyndman (5th Edition, 2016)
3. At Risk: Natural Hazards, People's Vulnerability and Disasters- Piers Blaikie, Terry Cannon, Ian Davis, Ben Wisner (2nd Edition, 2004)
4. Introduction to Geomorphology and Natural Hazards- K.S. Valdiya (Universities Press, 2010)
5. Disaster Management: Future Challenges and Opportunities- R.B. Singh (Springer, 2014)
6. Disaster Management- S.C. Sharma (Khanna Publishing, 2019)
7. Introduction to International Disaster Management- Damon P. Coppola (Butterworth-Heinemann, 3rd Edition, 2015)
8. Disasters and Development- Cuny, Frederick C. (Oxford University Press, 1983)
9. Handbook of Disaster Risk Reduction and Management (Ben Wisner, JC Gaillard, Ilan Kelman (Routledge, 2021)
10. Disaster Management in India (Ministry of Home Affairs, Government of India, 2011)
11. The Sendai Framework for Disaster Risk Reduction 2015–2030: A Critical Appraisal- Rajib Shaw (Springer, 2016)
12. Role of Institutions in Disaster Risk Reduction and Management (NIDM, Government of India)
13. India Disaster Report: Towards a Policy Initiative- Parasuraman & Unnikrishnan (Oxford University Press, 2000)
14. Community-Based Disaster Risk Reduction- Rajib Shaw (Emerald Publishing, 2012)
15. Disaster Risk Governance in India and Cross Cutting Issues- Indrajit Pal, Rajib Shaw (Springer, 2017)
16. Disaster Risk Reduction for the Built Environment- Lee Bosher (Wiley-Blackwell, 2014)

**Course No.: P1AGTE203**

**Credits: 02**

**Duration of Examination: 2½ hours**

**Title: Gemology**

**Maximum Marks: 50**

**(Minor I-10, Minor II 10, Major 30)**

**(Syllabus for the examination to be held in May 2027, May 2028 & May 2029)**

**Course Objectives:** To introduce the students about the concepts and techniques for identification of gemstones

**UNIT - I Basics of Gemology**

- 1.1 Gem and gemstones; General characteristics and chemical composition of gemstones; Nature of gem material: quality necessary in gems-beauty, rarity, durability.
- 1.2 Formation of gem stones. Crystal form and habit.
- 1.3 Nature of crystals: distinction between crystalline and amorphous material, crystal symmetry, Twinning, parallel growth, crystal form, crystal habit, seven crystal system. Identification of rough stones.
- 1.4 Classification of gem stones

**UNIT - II Physical Characteristics of Gemstones**

- 2.1 Physical characteristics of gemstones; Cleavage, Fracture, parting, and their importance in gemology and lapidary work. Units of measurement: metric scale, carat, pearl and grain.

- 2.2 Colours in gemstone: causes
- 2.3 Hardness its applications in gemology and limitations.
- 2.4 Quantitative determination of Specific gravity of gemstones by hydrostatic weighing, heavy liquids, flotation and pycnometer. Inclusions and other features of gemstones

**UNIT - III Optical Characteristics of Gemstones**

- 3.1 Electromagnetic spectrum, reflection and its importance in gemology, lustre, aurorescence, sheen, chatoyancy, asterism, luminescence, play of colours, labradorescence etc.
- 3.2 Principal, Construction and use of refractometer in gemology
- 3.3 Polariscopic and Dichroscope: construction and use in gemology,
- 3.4 Application of Chelsea colour filter, Infra-red ultraviolet and x-rays in gem identification

**UNIT - IV Advance Gemology**

- 4.1 Synthetic gemstones, methods of synthesis, and its characteristics. differentiation between natural and synthetic stones
- 4.2 Gem enhancement methods and their identification: colourless/coloured impregnation, heat treatment, coating, irradiation, diffusion, treatment, etc.
- 4.3 Imitation gemstones, glass and plastic imitations; organic materials. Pearls, corals, ivory and shells and amber and others
- 4.4 Grading of diamonds and coloured gemstones

**Recommended Books:**

|                              |                                                                |
|------------------------------|----------------------------------------------------------------|
| 1. Brocardo, G. (1981)       | Minerals and Gemstones – An identification Guide               |
| 2. Bruton Eric F.G.A. (1970) | Diamonds                                                       |
| 3. Karanth, R. V (, 2000).   | Gems and Gem Industry, Geological Society of India, Memoir, 45 |
| 4. Max Bauer (1968)          | Precious stones, Vol. I and II                                 |
| 5. Orlov Yu L (1973)         | The Mineralogy of the Diamond                                  |
| 6. Rajendran S. (2007):      | Mineral Exploration: Recent Strategies                         |
| 7. Wilson, M. (1967)         | Gems                                                           |

**Course Code: P1AGTE204**

**Course Credit: 2**

**Duration of Examination: 2½ hours**

**Course Title: Glaciology**

**Marks: 50**

**(Minor I-10, Minor II 10, Major 30)**

**(Syllabus for the examination to be held in May 2027, May 2028 & May 2029)**

**Course Objectives:** This course aims to give students an extensive understanding of the processes involving ice, snow, and glaciers in the Earth's cryosphere. It seeks to educate students on the dynamics, development, and interactions of glaciers with climate systems. The importance of glaciers in hydrology is emphasized in the course, particularly as it relates to the Himalayan region and the management of water resources. Students will gain knowledge on how to use technology and field-based methods to examine glacial processes and features. The effects of climate change on glaciers and related hazards like GLOFs are also emphasized.

**Course Outcome:** Upon successful completion of the course students will be

- Understanding of the dynamics, formation, and melting processes of glacier
- Able to evaluate the environmental effects of glacier-climate interaction
- Comprehend how glaciers, specifically in the Himalayan environment, play a hydrological function in managing water resources
- Prepared to assess the environmental and social effects of glacier retreat and related risks like floods caused by glacial lake outbursts

**Unit 1: Introduction to Glaciology and Fundamental Concepts**

- 1.1 Definition and Scope of Glaciology: Importance in Earth sciences and applications in climate and environmental studies
- 1.2 Types and Distribution of Glaciers: Alpine, continental, and other glacier types; Global glacier distribution and major ice sheets

*Munis* *Re* *A. I.* *MF* *Chandru* *Vas* *J*

- 1.3 Glacier Formation and Mass Balance: Snow accumulation and transformation into glacial ice; Mass balance concepts and equations
- 1.4 Glacier Geometry and Classification: Glacier morphology (cirques, valley glaciers, ice caps); Classification based on thermal regime (temperate, polar)

**Unit 2: Glacier Dynamics and Movement**

- 2.1 - Mechanisms of Glacier Motion: Internal deformation, basal sliding, and subglacial bed deformation
- 2.2 - Glacier Flow Laws and Models: Glen's flow law, creep, and stress-strain relationships
- 2.3 - Ice Rheology and Deformation: Crystal structure of ice; Temperature and impurity effects on flow
- 2.4 - Velocity Measurement and Flow Patterns: GPS, remote sensing, and field methods; Longitudinal and transverse velocity profiles

**Unit 3: Glacier Hydrology and Thermal Regime**

- 3.1 Glacial Meltwater and Drainage Systems: Supraglacial, englacial, and subglacial drainage networks
- 3.2 Heat Transfer in Glaciers, Temperature Profiles and Thermal Zonation: Conduction, convection, and latent heat; Cold vs warm-based glaciers; Seasonal variations in glacier temperature
- 3.3 Glacial Surges and Thermal Feedbacks: Mechanisms and case studies of glacial surging; Role of thermal conditions in glacier instability
- 3.4 Glacial Lakes and GLOFs (Glacial Lake Outburst Floods): Formation and types of glacial lakes; Triggering mechanism

**Unit 4: Glacial Landforms and Climate Change**

- 4.1 Erosional and Depositional Landforms of glaciers; Glacial Sediments and Transport Mechanisms: Till, glaciofluvial and glaciolacustrine deposits; Modes of sediment transport: supraglacial, englacial, subglacial
- 4.2 Periglacial Processes and Features: Permafrost, patterned ground, solifluction, etc.
- 4.3 Glaciers as Indicators of Climate Change: Ice core records, past climates, glacier response lags
- 4.4 Glacier Retreat and Hazards: Mass balance loss, rapid melting, rising GLOF risk; Concept of Monitoring and Modeling Glacier Changes.

**Books recommended**

|                                                                                                         |                                                                                                                      |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1. Glaciers and Glaciation –                                                                            | Douglas I. Benn & David J.A. Evans (2nd Ed.)                                                                         |
| 2. The Physics of Glaciers –                                                                            | Kurt M. Cuffey & W.S.B. Paterson (4th Ed.)                                                                           |
| 3. Fundamentals of Glacier Dynamics –                                                                   | C.J. van der Veen                                                                                                    |
| 4. Introduction to Modern Glaciology –                                                                  | C.J. Fierz & A. Lüthi (Selected Chapters)                                                                            |
| 5. Ice Physics –                                                                                        | Peter V. Hobbs                                                                                                       |
| 6. Remote Sensing of Glaciers –                                                                         | Petri Pellikka & W. Gareth Rees                                                                                      |
| 7. Principles of Glacier Mechanics –                                                                    | Roger LeB. Hooke                                                                                                     |
| 8. Glacial Lake Outburst Floods (GLOFs):                                                                | Causes, Impacts and Mitigation – Edited by R.B. Singh & D. Thakur (Springer),<br>Satya Singh (for Himalayan context) |
| 9. Snow and Glacier Hydrology –                                                                         | Matthew R. Bennett & Neil F. Glasser                                                                                 |
| 10. Glacial Geology: Ice Sheets and Landforms –                                                         | Edited by Michael J. Hambrey et al.                                                                                  |
| 11. Glacial Sedimentary Processes and Products –                                                        | Hugh M. French                                                                                                       |
| 12. Periglacial Geomorphology –                                                                         | Shawn J. Marshall (Part of the Princeton Primers in Climate series)                                                  |
| 13. The Cryosphere –                                                                                    |                                                                                                                      |
| 14. Climate Change and Glacial Hazards in the Indian Himalayas – R.K. Goyal (for case studies on GLOFs) |                                                                                                                      |
| 15. Sea Level Rise: History and Consequences –                                                          | Bruce C. Douglas et al., Ice Sheets and Late Quaternary                                                              |
| 16. Environmental Change –                                                                              | Martin J. Siegert                                                                                                    |
| 17. Glaciers: Climate, Hydrology and Geomorphology – Atle Nesje & Sveinn Brynjólfsson                   |                                                                                                                      |
| 18. Himalayan Glaciers: Hydrology and Hydrochemistr. D.P. Dobhal (Springer)                             |                                                                                                                      |
| 19. Glaciology and Glacial Geomorphology –                                                              | Navodita Bhatnagar                                                                                                   |
| 20. Glacier Atlas of India –                                                                            | V.K. Raina and Deepak Srivastava                                                                                     |

**Course Code: P1AGTE205**

**Course Credit: 2**

**Duration of Examination: 2½ hours**

20

**Course Title: Earthquake Geology**

**Marks: 50**

**(Minor I-10, Minor II 10, Major 30)**

Murs

Yash

Varma  
Bansal

(Syllabus for the examination to be held in May 2027, May 2028 & May 2029)

**Course Objectives:** Earthquake Geology course aims to provide students with a complete knowledge and understanding of the geological processes and features associated with earthquakes. This course focuses on the mechanics of faulting, seismic cycles, and the identification of active tectonic structures. Students will learn to analyze surface expressions of seismic activity, such as fault ruptures and ground deformation. Through the application of techniques like paleoseismology, course equips students with the skills necessary for seismic hazard assessment and risk mitigation.

**Course Outcomes:** This course will help students to develop a comprehensive understanding of

- Geological processes underlying seismic activity
- Analyzing active fault systems, interpreting seismic records, and reconstructing the history of past earthquakes Assess seismic hazards and contribute to risk mitigation strategies through geological mapping and fault characterization.

**Unit 1: Fundamentals of Earthquake Geology**

- 1.1 Introduction to Earthquakes: Definition, causes, and classification of earthquakes; Historical earthquakes and their geological significance.
- 1.2 Introduction to Seismotectonic: Basics of plate tectonics and earthquake generation; Lithospheric deformation and stress accumulation.
- 1.3 Seismic Waves and Measurement: Types of seismic waves; instruments used for earthquake measurement, earthquake magnitude scales.
- 1.4 Stress and Strain in the Earth's Crust: Elastic rebound theory; Fault mechanics and rock deformation.

**Unit 2: Fault Systems and Seismotectonics**

- 2.1 Fault Types and Classification: Normal, reverse, strike-slip faults; Characteristics and behavior of active faults.
- 2.2 Seismic Cycle: Inter-seismic, co-seismic, and post-seismic phases; Fault segmentation and seismic hazard assessment.
- 2.3 Paleoseismology: Definition, goals, and significance; Field Techniques in Paleoseismology; Trenching, logging, and sampling methods.
- 2.4 Earthquake-Induced Landforms: Geomorphic markers, Surface ruptures, liquefaction, landslides; Case studies of earthquake-induced geomorphology.

**Unit 3: Earthquake Hazards and Mitigation**

- 3.1 Ground Shaking and Structural Damage: Effects of ground motion on infrastructure; Seismic building codes and retrofitting strategies.
- 3.2 Secondary Earthquake Hazards: Tsunamis, landslides, and soil liquefaction; Predictive models for secondary hazards.
- 3.3 Risk Assessment and Seismic Zoning: Mapping active seismic zones; Probabilistic hazard analysis.
- 3.4 Early Warning Systems and Preparedness: Earthquake forecasting methods; Emergency response strategies and community awareness.

**Unit 4: Applications and advances in Earthquake Geology**

- 4.1 Induced Seismicity and Anthropogenic Causes: Reservoirs, hydraulic fracturing, mining; Regulatory frameworks and monitoring.
- 4.2 Computational Seismology and Earthquake Simulation: Earthquake modeling and prediction algorithms; AI and machine learning applications in earthquake forecasting.
- 4.3 Case Studies of Significant Earthquakes: Analysis of notable earthquakes worldwide; Lessons learned from past seismic disasters.
- 4.4 Future Directions in Earthquake Research: Advances in earthquake geology and mitigation strategies; Role of interdisciplinary approaches in seismic studies.

**Recommended Books:**

1. Earthquake Geology.
2. Introduction to Seismology.
3. An Introduction to Seismology, Earthquakes, and Earth Structure. Seth Stein and Michael Wysession, 2003 (2nd Edition)
4. Seismology and Plate Tectonics (Springer).

## **Syllabus for One Year PG Program in Geology**

|                                                                                       |                                                          |
|---------------------------------------------------------------------------------------|----------------------------------------------------------|
| 5. Seismic Waves and Sources.                                                         | A. K. Ghosh, 1998                                        |
| 6. Earthquake Hazard and Seismic Risk Reduction.                                      | J. C. Paul and K. S. Valdiya, 2000                       |
| 7. Seismology.                                                                        | D. S. K. Iyengar, 2001                                   |
| 8. Geology of Earthquakes.                                                            | Robert S. Yeats, Kerry Sieh, and Clarence R. Allen, 1999 |
| 9. Plate Tectonics and Great Earthquakes.                                             | Lynn R. Sykes, 2019                                      |
| 10. Overview of Artificial Intelligence (AI) and Machine Learning (ML) in Seismology. | Harendra Kumar Dadhich, 2023.                            |

**Course No.: P1AGRC206**

**Credits: 16**

**Title: Dissertation**

**Maximum Marks: 400**

**(Syllabus for the examination to be held in May 2027, May 2028 & May 2029)**

The dissertation shall comprise field / laboratory work by a student. The allotment of specialization/ Supervisor shall be based on preference and merit (total marks obtained in Semester I & II). The number of students shall be distributed equally among the permanent faculty on the basis of merit and preference of students. The dissertation shall be evaluated by a board of Examiners comprising Head of the Department, Supervisor and an external examiner.